Тест по математика за VII клас, 2020-случайни въпроси


НАЦИОНАЛНО ВЪНШНО ОЦЕНЯВАНЕ ПО МАТЕМАТИКА – VII клас

Примерен тест със случайни въпроси, модул 1


7и клас - Математика - Външно оценяване
1. Стойността на израза $12 – (2,5 – b)$ при $b = –2,5$ е:







2. Изразът $(1 − 2x)^2$ е тъждествено равен на:







3. Турист изкачва един връх за 6 чàса със скорост $x$ km/h и се връща обратно за 3 пъти по-малко време, като се движи с 4 km/h по-бързо. Уравнението, което изразява тази зависимост, е:







4. При $а = –2$ изразът $5–3(a–b)$ e тъждествено равен на:







5. Равенството$(3x–2)^2=(*)–12x+4$ е тъждество, ако (*) се замени с едночлена:







6. По данните от чертежа ъглите $x$ и $y$ са в отношение:

 

 







7. На чертежа правите $a$ и $b$ са успоредни. Ъгъл $α$ е равен на:







8. Числата 0 и 2 са корените на уравнението:





9. Колко грама захар има в 500 грама 5% захарен разтвор?







10. На чертежа $S$1 и $S$2 са симетралите съответно на страните $AC$ и $BC$ в триъгълника $ABC$. Ако $AB + KP = 24$ $cm$, дължината на $CO$ е:







11. Изразът $a^2 + 2a – 3$ е тъждествено равен на:







12. Коренът на уравнението $(x − 1)^2 − x(x − 1) = 0$ е:





13. Надя, Ели, Руми и Ира продават билети за благотворителен концерт. Диаграмата показва броя на билетите, които всяка от тях е продала. Ира е продала 30 билета.

Колко билета общо са продали Надя, Ели и Руми?







14. На чертежа $ΔABC$ е равнобедрен ($AC=BC$). Външният ъгъл при върха $C$ е равен на 86° и \(\sphericalangle DAB\)=15° . Мярката на $x$ e:







15. След намаление на цената с 20% готварска печка струва 220 лв. Цената на печката
преди намалението е била:






16. Две от страните на триъгълник са с дължини 5 cm и 7 cm, а третата има дължина, която се изразява с естествено число сантиметри. Броят на триъгълниците, които отговарят на това условие, е:





17. След като похарчил $\frac{4}{5}$ от парите, които имал, на Мони му останали 20 лева. Колко
лева е похарчил Мони?






18. На чертежа $CD$ е височина на правоъгълния $ΔABC$ към хипотенузата му $AB$. Точката M е среда на страната $AC$, а точката $N$ е среда на страната $BC$. Ако $AC = 6$ $cm$ и $BC = $8$ $cm$, лицето на $ΔDN$M е:








Диагоналите на четириъгълника $ABCD$ ($AB$ \( \neq \) $BC$) се пресичат в точка $O$. Диагоналът $AC$ е ъглополовяща на \(\sphericalangle BAD\) и на \(\sphericalangle BCD\).

 



19. Намерете мярката на \(\sphericalangle AOD\)


20. Намерете и запишете (в кв.см) лицето на четириъгълника ABCD.




21. Намерете и запишете (в см) обиколката на четириъгълника ABCD.




22. Намерете и запишете отсечката, която е равна на отсечката AD.


На диаграмата е показан броят на продадените леки автомобили от една автокъща през месеците април, май, юни и юли.



23. През кой от месеците продажбите на автомобили нарастват двойно спрямо предния месец?


24. Каква част от общия брой продадени автомобили за четирите месеца са тези, които са продадени през април?







25. Колко автомобила са продавани средно за месец през периода май – юли?


26. С колко процента е нараснала продажбата на леки автомобили през юли спрямо юни?