Решени тестове
Вход
Учебни помагала
Контакти
Вход с Facebook
4
ти
клас
5
и
клас
6
и
клас
7
и
клас
8
и
клас
9
и
клас
12
и
клас
10
и
клас
Езици
Програмиране
Занимателни тестове
Тест по математика за VII клас, 2020-случайни въпроси
НАЦИОНАЛНО ВЪНШНО ОЦЕНЯВАНЕ ПО МАТЕМАТИКА – VII клас
Примерен тест със
с
лучайни въпроси
, модул 1
7
и
клас - Математика - Външно оценяване
1.
Ако $b=\frac{1}{6}$, то $(b–1)–3(1–b)+4(2b–1)$ е равно на:
$–6$
$–\frac{4}{6}$
$\frac{4}{6}$
$6$
2.
Разликата 25.25 – 5.5 е равна на произведението:
25.20.5
20.30
20.20
25.25.25
3.
Нормалният вид на $(x – 0,2)^2$ е многочленът:
$x^2 – 0,4x + 0,04$
$x^2 – 0,4$
$x^2 – 0,4x + 0,4$
$x^2 + 0,04$
4.
Кое от неравенствата НЯМА решение?
$t − 2t < t$
$t − t < −1$
$t ≤ 3t − 2t$
$0t < 1 − t$
5.
Уравнението $−x^2 = (4 − x)x$ е еквивалентно на:
$x = x$
$0x = 4$
$−5x = 0$
$4x = 1$
6.
На чертежа $AC = BC$. Мярката на \(\sphericalangle ACB\) е:
50°
80°
75°
25°
7.
На чертежа правите $a$ и $b$ са успоредни. Ъгъл $α$ е равен на:
115°
85°
105°
75°
8.
Числата 1 и 0 са корените на уравнението:
$|2x−1|=−1$
$|2x−1|=1$
$|2x−1|=0$
$−|2x−1|=1$
9.
В склад доставили 5200 кг ягоди. Първия ден продали 20% от цялото количество, а втория ден – $\frac{3}{4}$ от останалото. Колко кг ягоди са продали през втория ден?
3900
3120
4160
2600
10.
На чертежа $S$
1
и $S$
2
са симетралите съответно на страните $AC$ и $BC$ в триъгълника $ABC$. Ако $AB + KP = 24$ $cm$, дължината на $CO$ е:
$6$ $cm$
$4$ $cm$
$8$ $cm$
$12$ $cm$
11.
Изразът $a^2 + 2a – 3$ е тъждествено равен на:
$(a + 3) (a – 1)$
$a (a + 3) – 3$
$(2a – 1) (\frac{a}{2} + 3)$
$(a^2 + 1) (a – 3)$
12.
Посочете едно цяло число и едно дробно число, които са решения на неравенството $9 ≤ –3x$.
–27, –2.2
2, 2.5
–3, –4.3
–2, –2.5
13.
Двама работници трябва да свършат определена работа. Единият може да свърши сам работата за $4$ $h$, а другият - за $12$ $h$. Първоначално единият работи сам $t$ $min$, след което двамата довършват работата. Ако $t$ е не повече от $20$ $min$, за колко възможно най-малко часа двамата работници ще свършат работата?
$3$ $h$ $45$ $min$
$3$ $h$
$2$ $h$ $45$ $min$
$5$ $h$
14.
На чертежа $ΔABC$ е правоъгълен, $CM$ е медиана към хипотенузата $AB$, $CH$ е височина към хипотенузата, $CM = BC$ и $CH = 3$ $cm$. Дължината на страната $AC$ е:
3 cm
6 cm
4 cm
5 cm
15.
Моторна лодка изминава разстоянието между две пристанища по течението за 3 часа, а срещу течението – за 4 часа. Ако скоростта на течението е 6 км/ч, то разстоянието между пристанищата е:
126 км
42 км
144 км
168 км
16.
Ако едно естествено число умножим с 4 и от полученото произведение извадим 7,
ще се получи число, по-малко от 13. Сборът на всички естествени числа с това
свойство е:
15
11
12
10
17.
След като похарчил $\frac{4}{5}$ от парите, които имал, на Мони му останали 20 лева. Колко
лева е похарчил Мони?
16
100
80
25
18.
На чертежа $CD$ е височина на правоъгълния $ΔABC$ към хипотенузата му $AB$. Точката M е среда на страната $AC$, а точката $N$ е среда на страната $BC$. Ако $AC = 6$ $cm$ и $BC = $8$ $cm$, лицето на $ΔDN$M е:
7
cm
²
12
cm
²
6
cm
²
14
cm
²
За равнобедрения $ΔABC$ е дадено, че \(\sphericalangle ACB\) = 120° и $AL$ е ъглополовяща на \(\sphericalangle BAC\). На страната $AB$ е взета точка $M$ така, че $AM = AC$.
19.
Намерете големината на \(\sphericalangle ALM\) в градуси.
45°
35°
60°
55°
20.
Ако $CL = m$ и $BL = n$, намерете периметърът на $ΔMBL$.
$m + 3n$
$2n + m$
$2m + n$
$3m + n$
На диаграмата е показан броят на продадените леки автомобили от една автокъща през месеците април, май, юни и юли.
21.
През кой от месеците продажбите на автомобили нарастват двойно спрямо предния месец?
22.
Каква част от общия брой продадени автомобили за четирите месеца са тези, които са продадени през април?
\( \frac 1 6 \)
\( \frac 1 4 \)
0,4
0,2
23.
Колко автомобила са продавани средно за месец през периода май – юли?
24.
С колко процента е нараснала продажбата на леки автомобили през юли спрямо юни?