Тест по математика за VII клас, 2020-случайни въпроси


НАЦИОНАЛНО ВЪНШНО ОЦЕНЯВАНЕ ПО МАТЕМАТИКА – VII клас

Примерен тест със случайни въпроси, модул 1


7и клас - Математика - Външно оценяване
1. Стойността на израза $12 – (2,5 – b)$ при $b = –2,5$ е:







2. Кое числово равенство е вярно?







3. Нормалният вид на $(x – 0,2)^2$ е многочленът:







4. Посочете невярното равенство:







5. Коренът на уравнението $2 – 2x = \frac{1}{2}$ е:







6. На чертежа $△ABC$ е разностранен. Ако $AO = OB$, то точка $O$ лежи на:







7. На чертежа правите $a$ и $b$ са успоредни. Ъгъл $α$ е равен на:







8. Числата 0 и 2 са корените на уравнението:





9. Колко грама захар има в 500 грама 5% захарен разтвор?







10. На чертежа $S$1 и $S$2 са симетралите съответно на страните $AC$ и $BC$ в триъгълника $ABC$. Ако $AB + KP = 24$ $cm$, дължината на $CO$ е:







11. Изразът $(a – 1)^3 – (a – 1)(a^2 + a + 1)$ е тъждествено равен на:







12. Посочете едно цяло число и едно дробно число, които са решения на неравенството $9 ≤ –3x$.







13. Двама работници трябва да свършат определена работа. Единият може да свърши сам работата за $4$ $h$, а другият - за $12$ $h$. Първоначално единият работи сам $t$ $min$, след което двамата довършват работата. Ако $t$ е не повече от $20$ $min$, за колко възможно най-малко часа двамата работници ще свършат работата?







14. В $ΔABC$ $AL$ е ъглополовяща. Големината на \(\sphericalangle ALB\) е:







15. Моторна лодка изминава разстоянието между две пристанища по течението за 3 часа, а срещу течението – за 4 часа. Ако скоростта на течението е 6 км/ч, то разстоянието между пристанищата е:







16. Цената за пътуване с такси се определя по формулата $C = 1,20 + 0,80.k$, където $k$ са изминатите километри, а $C$ е цената в левове. От тази формула изминатите километри $k$ за дадена цена $С$ се определят така:







17. Зар се хвърля три пъти и получените точки се събират. Броят на възможните сборове на трите числа е:





18. Ъглополовящите $AM$ и $BN$ в успоредника $ABCD$ разделят страната $DC$ на три равни части. Дължината на страната $BC$ е $a$ cm. Периметърът на успоредника $ABCD$ в сантиметри е равен на:

 







В $ΔABC$ отсечката $CH$ е височина и точка $Н$ е вътрешна за отсечката $АВ$. Точката $M$ е средата на $BC$ и $AH = CH = HM$. Точката $N$ е от отсечката $HB$ и е такава, че $HN = MN = NB$.


Даденият чертеж е само за илюстрация – не е начертан в мащаб и не е предназначен за директно измерване на дължини на отсечки и мерки на ъгли.



19. Намерете мярката на \(\sphericalangle CAB\).





20. Намерете мярката на \(\sphericalangle ABC\).







21. Намерете отношението $HN : BN$.





22. Намерете отношението на лицата $S$ΔNMH : $S$ΔCMH.







На диаграмата е показан броят на продадените леки автомобили от една автокъща през месеците април, май, юни и юли.



23. През кой от месеците продажбите на автомобили нарастват двойно спрямо предния месец?


24. Каква част от общия брой продадени автомобили за четирите месеца са тези, които са продадени през април?







25. Колко автомобила са продавани средно за месец през периода май – юли?


26. С колко процента е нараснала продажбата на леки автомобили през юли спрямо юни?