Тест по математика за VII клас, 2020-случайни въпроси


НАЦИОНАЛНО ВЪНШНО ОЦЕНЯВАНЕ ПО МАТЕМАТИКА – VII клас

Примерен тест със случайни въпроси, модул 1


7и клас - Математика - Външно оценяване
1. Изразът $x + \frac{1}{4}$ е тъждествено равен на:







2. Ако $\frac{3^8.9^3}{27^3} = 3^m$, то $m$ е равно на:







3. Нормалният вид на $(x – 0,2)^2$ е многочленът:







4. Посочете невярното равенство:







5. Равенството$(3x–2)^2=(*)–12x+4$ е тъждество, ако (*) се замени с едночлена:







6. По данните от чертежа ъглите $x$ и $y$ са в отношение:

 

 







7. На чертежа правите $a$, $b$ и $c$ са успоредни. Големината на ъгъл $ x $ е:







8. Корените на уравнението $2 |1 – x| – 5 = –1$ са:







9. Мария почиства сама жилището си за 6 чàса, а нейната майка почиства същото жилище за 4 чàса. За колко чàса ще почистят жилището, ако работят заедно?







10. Даден е равностранен триъгълник $ABC$. На лъча $BA$ е построена отсечката $AM = AC$ (точката $A$ е между точките $M$ и $B$) и на лъча $AB$ е построена отсечката $BN = BC$ (точката $B$ е между точките $N$ и $A$). Тогава \(\sphericalangle MCN\) е равен на:







11. Изразът $mx-2x-2y+my$ е тъждествено равен на израза:





12. Решенията на неравенството ${2x-3 \over 3}>{2x+3 \over 2}$ са:





13. Надя, Ели, Руми и Ира продават билети за благотворителен концерт. Диаграмата показва броя на билетите, които всяка от тях е продала. Ира е продала 30 билета.

Колко билета общо са продали Надя, Ели и Руми?







14. На чертежа точката $D$ от отсечката $AC$ е избрана така, че $AD = DB = BC$. Мярката на \(\sphericalangle ABC\) e:







15. Даден е правоъгълник с дължини на страните две последователни нечетни числа. Ако намалим по-малката му страна с $4$ $cm$, а другата запазим, ще получим правоъгълник, лицето на който е с $36$ $cm^2$ по-малко от лицето на дадения правоъгълник. Лицето на дадения правоъгълник е:







16. Цената за пътуване с такси се определя по формулата $C = 1,20 + 0,80.k$, където $k$ са изминатите километри, а $C$ е цената в левове. От тази формула изминатите километри $k$ за дадена цена $С$ се определят така:







17. Бабата на Камен го поканила за обяд в 12 часá. След като избрал маршрута, той преценил, че ако тръгне в 10 часá и 30 минути с ролери, ще закъснее с 15 минути. Затова Камен тръгнал в 10 часá и 30 минути с велосипед по същия маршрут и пристигнал с 20 минути по-рано от уречения час. Скоростта на Камен с ролери е със 7 кm/h по-малка, отколкото скоростта му с велосипед. Колко километра е маршрутът от дома на Камен до дома на баба му?





18. На чертежа $CD$ е височина на правоъгълния $ΔABC$ към хипотенузата му $AB$. Точката M е среда на страната $AC$, а точката $N$ е среда на страната $BC$. Ако $AC = 6$ $cm$ и $BC = $8$ $cm$, лицето на $ΔDN$M е:








Диагоналите на четириъгълника $ABCD$ ($AB$ \( \neq \) $BC$) се пресичат в точка $O$. Диагоналът $AC$ е ъглополовяща на \(\sphericalangle BAD\) и на \(\sphericalangle BCD\).

 



19. Намерете мярката на \(\sphericalangle AOD\)


20. Намерете и запишете (в кв.см) лицето на четириъгълника ABCD.




21. Намерете и запишете (в см) обиколката на четириъгълника ABCD.




22. Намерете и запишете отсечката, която е равна на отсечката AD.


Диаграмата показва броя на учениците стипендианти за учебната 2018/2019 и 2019/2020 година от едно училище.



23. Какво е отношението на броя на учениците, получили стипендии през 2018/2019 година, към този през 2019/2020 година?







24. Рaзмерът на една месечна стипендия през 2018/2019 г. е бил 105 лева, а през 2019/2020 г. – 135 лева. Всеки от стипендиантите получава стипендия през 10 от дванайсетте месеца на учебната година. Колко лева са необходими, за да се изплатят стипендиите общо за двете учебни години в училището?