Тест по математика за VII клас, 2020-случайни въпроси


НАЦИОНАЛНО ВЪНШНО ОЦЕНЯВАНЕ ПО МАТЕМАТИКА – VII клас

Примерен тест със случайни въпроси, модул 1


7и клас - Математика - Външно оценяване
1. Стойността на израза $12 – (2,5 – b)$ при $b = –2,5$ е:







2. Изразът $(1 − 2x)^2$ е тъждествено равен на:







3. Нормалният вид на $(x – 0,2)^2$ е многочленът:







4. Посочете невярното равенство:







5. Уравнението $−x^2 = (4 − x)x$ е еквивалентно на:





6. На чертежа $△ABC$ е разностранен. Ако $AO = OB$, то точка $O$ лежи на:







7. На чертежа правите $a$ и $b$ са успоредни. Ъгъл $α$ е равен на:







8. Числата 0 и 2 са корените на уравнението:





9. Намалих 6 пъти естественото число $n$ и получих число, по-голямо от 1,8. Най-малкото число $n$, за което това е вярно, е:







10. В $ΔABC$ $BM$ е медиана. Върху лъча $BM$ е взета точка $P$ така, че $ΔAMP \cong ΔCMB$. Ако \(\sphericalangle ABM\) = 30° и \(\sphericalangle APB\) = 40°, на колко градуса е равен \(\sphericalangle ABC\)?
 

 







11. Многочленът $2(2y − 5) − 4y(2y − 5)$ е тъждествено равен на:





12. Коренът на уравнението $(x − 1)^2 − x(x − 1) = 0$ е:





13. Басейн се пълни от два крана. Единият може да го напълни за 20 минути, а другият – за 30 минути. За колко минути ще се напълни басейнът, ако се отворят и двата крана едновременно?







14. В $ΔABC$ $AL$ е ъглополовяща. Големината на \(\sphericalangle ALB\) е:







15. Даден е правоъгълник с дължини на страните две последователни нечетни числа. Ако намалим по-малката му страна с $4$ $cm$, а другата запазим, ще получим правоъгълник, лицето на който е с $36$ $cm^2$ по-малко от лицето на дадения правоъгълник. Лицето на дадения правоъгълник е:







16. Ученици от едно училище купили 40 билета за театър за 488 лева. Един билет на партера струва 14 лева, а един билет на балкона струва 10 лева. По колко билета са купили от двата вида?





17. От София до Бургас разстоянието по определен маршрут е 390 km. От двата града един срещу друг тръгнали две превозни средства, като едното превозно средство се движело със скорост, която е с 10 km/h по-голяма от скоростта на другото превозно средство. След 3 часа пътуване двете превозни средства се намирали на разстояние 24 km един от друг? Каква е възможно най-голямата скорост, с която се е движело по-бавното превозно средство?







18. Ъглополовящите $AM$ и $BN$ в успоредника $ABCD$ разделят страната $DC$ на три равни части. Дължината на страната $BC$ е $a$ cm. Периметърът на успоредника $ABCD$ в сантиметри е равен на:

 







В $ΔABC$ отсечката $CH$ е височина и точка $Н$ е вътрешна за отсечката $АВ$. Точката $M$ е средата на $BC$ и $AH = CH = HM$. Точката $N$ е от отсечката $HB$ и е такава, че $HN = MN = NB$.


Даденият чертеж е само за илюстрация – не е начертан в мащаб и не е предназначен за директно измерване на дължини на отсечки и мерки на ъгли.



19. Намерете мярката на \(\sphericalangle CAB\).





20. Намерете мярката на \(\sphericalangle ABC\).







21. Намерете отношението $HN : BN$.





22. Намерете отношението на лицата $S$ΔNMH : $S$ΔCMH.







На диаграмата е показан броят на продадените леки автомобили от една автокъща през месеците април, май, юни и юли.



23. През кой от месеците продажбите на автомобили нарастват двойно спрямо предния месец?


24. Каква част от общия брой продадени автомобили за четирите месеца са тези, които са продадени през април?







25. Колко автомобила са продавани средно за месец през периода май – юли?


26. С колко процента е нараснала продажбата на леки автомобили през юли спрямо юни?