Решени тестове
Вход
Учебни помагала
Контакти
Вход с Facebook
4
ти
клас
5
и
клас
6
и
клас
7
и
клас
8
и
клас
9
и
клас
12
и
клас
10
и
клас
Езици
Програмиране
Занимателни тестове
Тест по математика за VII клас, 2020-случайни въпроси
НАЦИОНАЛНО ВЪНШНО ОЦЕНЯВАНЕ ПО МАТЕМАТИКА – VII клас
Примерен тест със
с
лучайни въпроси
, модул 1
7
и
клас - Математика - Външно оценяване
1.
Ако $b=\frac{1}{6}$, то $(b–1)–3(1–b)+4(2b–1)$ е равно на:
$–6$
$\frac{4}{6}$
$6$
$–\frac{4}{6}$
2.
Изразът $(1 − 2x)^2$ е тъждествено равен на:
$1 − 4x + 4x^2$
$1 − 4x − 4x^2$
$1 + 4x^2$
$1 − 4x^2$
3.
Нормалният вид на $(x – 0,2)^2$ е многочленът:
$x^2 – 0,4x + 0,04$
$x^2 + 0,04$
$x^2 – 0,4x + 0,4$
$x^2 – 0,4$
4.
При $а = –2$ изразът $5–3(a–b)$ e тъждествено равен на:
$2+3b$
$11–3b$
$3b+11$
$b+11$
5.
Коренът на уравнението $2 – 2x = \frac{1}{2}$ е:
$0$
$1\frac{1}{2}$
$\frac{3}{4}$
$1\frac{1}{4}$
6.
По данните от чертежа ъглите $x$ и $y$ са в отношение:
3:1
4:1
7:2
5:1
7.
На чертежа правите $a$ и $b$ са успоредни. Ъгъл $α$ е равен на:
115°
75°
105°
85°
8.
Числата 0 и 2 са корените на уравнението:
$−|x−1|=−1$
$|x−1|=−1$
$|x+1|=1$
$|x−2|=0$
9.
В склад доставили 5200 кг ягоди. Първия ден продали 20% от цялото количество, а втория ден – $\frac{3}{4}$ от останалото. Колко кг ягоди са продали през втория ден?
4160
3120
3900
2600
10.
Мярката на \(\sphericalangle BAC\) от чертежа е:
40°
10°
80°
50°
11.
Изразът $a^2 + 2a – 3$ е тъждествено равен на:
$(a + 3) (a – 1)$
$a (a + 3) – 3$
$(a^2 + 1) (a – 3)$
$(2a – 1) (\frac{a}{2} + 3)$
12.
По-големият корен на уравнението $(x + 2)^3 – (3x + 2) (x + 4) = x (-x – 1)^2$ е:
3
0
–3
7
13.
Камион и лека кола тръгват едновременно един срещу друг от два пункта, които са на разстояние $400$ $km$ един от друг. Ако превозните средства се движат с постоянна скорост, съответно $60$ $km/h$ и $90$ $km/h$ , те ще се срещнат след:
$2$ $h$ $20$ $min$
$2$ $h$ $36$ $min$
$2$ $h$
$2$ $h$ $40$ $min$
14.
На чертежа $ΔABC$ е правоъгълен, $CM$ е медиана към хипотенузата $AB$, $CH$ е височина към хипотенузата, $CM = BC$ и $CH = 3$ $cm$. Дължината на страната $AC$ е:
3 cm
5 cm
6 cm
4 cm
15.
След намаление на цената с 20% готварска печка струва 220 лв. Цената на печката
преди намалението е била:
275 лв.
240 лв.
264 лв.
1100 лв.
16.
Цената за пътуване с такси се определя по формулата $C = 1,20 + 0,80.k$, където $k$ са изминатите километри, а $C$ е цената в левове. От тази формула изминатите километри $k$ за дадена цена $С$ се определят така:
$k = (C – 1,20):0,80$
$k = C:2,00$
$k = 0,80.C – 1,20$
$k = (C + 1,20).0,80$
17.
След като похарчил $\frac{4}{5}$ от парите, които имал, на Мони му останали 20 лева. Колко
лева е похарчил Мони?
80
25
16
100
18.
Обемът на дадения на чертежа прав кръгов конус е:
$36 \pi \space см^3$
$12 \pi \space см^3$
$15 \pi \space см^3$
$4 \pi \space см^3$
Диагоналите на четириъгълника $ABCD$ ($AB$ \( \neq \) $BC$) се пресичат в точка $O$. Диагоналът $AC$ е ъглополовяща на \(\sphericalangle BAD\) и на \(\sphericalangle BCD\).
19.
Намерете мярката на \(\sphericalangle AOD\)
20.
Намерете и запишете (в кв.см) лицето на четириъгълника
ABCD.
21.
Намерете и запишете (в см) обиколката на четириъгълника
ABCD.
22.
Намерете и запишете отсечката, която е равна на отсечката
AD
.
На диаграмата е показан броят на продадените леки автомобили от една автокъща през месеците април, май, юни и юли.
23.
През кой от месеците продажбите на автомобили нарастват двойно спрямо предния месец?
24.
Каква част от общия брой продадени автомобили за четирите месеца са тези, които са продадени през април?
\( \frac 1 6 \)
0,2
0,4
\( \frac 1 4 \)
25.
Колко автомобила са продавани средно за месец през периода май – юли?
26.
С колко процента е нараснала продажбата на леки автомобили през юли спрямо юни?