Решени тестове
Вход
Учебни помагала
Контакти
Вход с Facebook
4
ти
клас
5
и
клас
6
и
клас
7
и
клас
8
и
клас
9
и
клас
12
и
клас
10
и
клас
Езици
Програмиране
Занимателни тестове
Тест по математика за VII клас, 2020-случайни въпроси
НАЦИОНАЛНО ВЪНШНО ОЦЕНЯВАНЕ ПО МАТЕМАТИКА – VII клас
Примерен тест със
с
лучайни въпроси
, модул 1
7
и
клас - Математика - Външно оценяване
1.
Стойността на израза $12 – (6 + m)$ при $m = –12$ е:
18
6
–6
–18
2.
Ако $\frac{3^8.9^3}{27^3} = 3^m$, то $m$ е равно на:
5
3
2
4
3.
Многочленът $k^2 − 36$ е тъждествено равен на:
$2(k − 18)$
$(k − 18)(k + 18)$
$(k − 6)^2$
$(k − 6)(k + 6)$
4.
Посочете невярното равенство:
$64 – 16a + a^2 = (8 – a)^2$
$x^3 + 6x^2 + (2x + 8) = (x + 2)^3$
$x^2 – 6x + 9 = (x – 3)^2$
$\frac{a^2}{9} – \frac{2ab}{3} + b^2 = (\frac{a}{3} + b)^2$
5.
Равенството$(3x–2)^2=(*)–12x+4$ е тъждество, ако (*) се замени с едночлена:
$3x^2$
$9x^2$
$9x$
$3x$
6.
На чертежа $AC = BC$. Мярката на \(\sphericalangle ACB\) е:
50°
25°
80°
75°
7.
На чертежа правите $a$ и $b$ са успоредни. Ъгъл $α$ е равен на:
105°
85°
115°
75°
8.
Корените на уравнението $2 |1 – x| – 5 = –1$ са:
–1 и –3
1 и –3
–1 и 3
1 и 3
9.
Колко грама захар има в 500 грама 5% захарен разтвор?
25
250
5
100
10.
В $ΔABC$ $BM$ е медиана. Върху лъча $BM$ е взета точка $P$ така, че $ΔAMP \cong ΔCMB$. Ако \(\sphericalangle ABM\) = 30° и \(\sphericalangle APB\) = 40°, на колко градуса е равен \(\sphericalangle ABC\)?
40°
30°
110°
70°
11.
Многочленът $2(2y − 5) − 4y(2y − 5)$ е тъждествено равен на:
$2(2y − 5)(1 + 2y)$
$−2y(2y − 5)$
$4(2y − 5)(1 − y)$
$2(2y − 5)(1 − 2y)$
12.
По-големият корен на уравнението $(x + 2)^3 – (3x + 2) (x + 4) = x (-x – 1)^2$ е:
3
–3
0
7
13.
Камион и лека кола тръгват едновременно един срещу друг от два пункта, които са на разстояние $400$ $km$ един от друг. Ако превозните средства се движат с постоянна скорост, съответно $60$ $km/h$ и $90$ $km/h$ , те ще се срещнат след:
$2$ $h$ $20$ $min$
$2$ $h$ $36$ $min$
$2$ $h$
$2$ $h$ $40$ $min$
14.
На чертежа $ΔABC$ е равнобедрен ($AC=BC$). Външният ъгъл при върха $C$ е равен на 86° и \(\sphericalangle DAB\)=15° . Мярката на $x$ e:
43°
28°
94°
58°
15.
След намаление на цената с 20% готварска печка струва 220 лв. Цената на печката
преди намалението е била:
1100 лв.
240 лв.
275 лв.
264 лв.
16.
Ако едно естествено число умножим с 4 и от полученото произведение извадим 7,
ще се получи число, по-малко от 13. Сборът на всички естествени числа с това
свойство е:
15
11
10
12
17.
От София до Бургас разстоянието по определен маршрут е 390 km. От двата града един срещу друг тръгнали две превозни средства, като едното превозно средство се движело със скорост, която е с 10 km/h по-голяма от скоростта на другото превозно средство. След 3 часа пътуване двете превозни средства се намирали на разстояние 24 km един от друг? Каква е възможно най-голямата скорост, с която се е движело по-бавното превозно средство?
65 km/h
60 km/h
64 km/h
54 km/h
18.
Обемът на дадения на чертежа прав кръгов конус е:
$36 \pi \space см^3$
$12 \pi \space см^3$
$15 \pi \space см^3$
$4 \pi \space см^3$
Диагоналите на четириъгълника $ABCD$ ($AB$ \( \neq \) $BC$) се пресичат в точка $O$. Диагоналът $AC$ е ъглополовяща на \(\sphericalangle BAD\) и на \(\sphericalangle BCD\).
19.
Намерете мярката на \(\sphericalangle AOD\)
20.
Намерете и запишете (в кв.см) лицето на четириъгълника
ABCD.
21.
Намерете и запишете (в см) обиколката на четириъгълника
ABCD.
22.
Намерете и запишете отсечката, която е равна на отсечката
AD
.
Диаграмата показва броя на учениците стипендианти за учебната 2018/2019 и 2019/2020 година от едно училище.
23.
Какво е отношението на броя на учениците, получили стипендии през 2018/2019 година, към този през 2019/2020 година?
\( \frac 4 5 \)
\( \frac {31} {41}\)
\( \frac 5 7 \)
\( \frac 3 4\)
24.
Рaзмерът на една месечна стипендия през 2018/2019 г. е бил 105 лева, а през 2019/2020 г. – 135 лева. Всеки от стипендиантите получава стипендия през 10 от дванайсетте месеца на учебната година. Колко лева са необходими, за да се изплатят стипендиите общо за двете учебни години в училището?