Решени тестове
Вход
Учебни помагала
Контакти
Вход с Facebook
4
ти
клас
5
и
клас
6
и
клас
7
и
клас
8
и
клас
9
и
клас
12
и
клас
10
и
клас
Езици
Програмиране
Занимателни тестове
Тест по математика за VII клас, 2020-случайни въпроси
НАЦИОНАЛНО ВЪНШНО ОЦЕНЯВАНЕ ПО МАТЕМАТИКА – VII клас
Примерен тест със
с
лучайни въпроси
, модул 1
7
и
клас - Математика - Външно оценяване
1.
Ако $b=\frac{1}{6}$, то $(b–1)–3(1–b)+4(2b–1)$ е равно на:
$\frac{4}{6}$
$6$
$–6$
$–\frac{4}{6}$
2.
Ако $\frac{3^8.9^3}{27^3} = 3^m$, то $m$ е равно на:
4
5
3
2
3.
Нормалният вид на $(x – 0,2)^2$ е многочленът:
$x^2 – 0,4$
$x^2 – 0,4x + 0,04$
$x^2 + 0,04$
$x^2 – 0,4x + 0,4$
4.
При $а = –2$ изразът $5–3(a–b)$ e тъждествено равен на:
$b+11$
$3b+11$
$11–3b$
$2+3b$
5.
Коренът на уравнението $(5 + x) (5 – x) – 5x (3 – \frac{1}{5}x) = 20$ е:
$– 3$
$\frac{1}{3}$
$2$
$3$
6.
По данните от чертежа ъглите $x$ и $y$ са в отношение:
5:1
7:2
4:1
3:1
7.
Мярката на \(\sphericalangle BCM\) от чертежа е:
140°
80°
100°
110°
8.
Кой израз е тъждествено равен на многочлена, отговарящ на следното описание:
Към втората степен на $4y$ е прибавено произведението на $y$ и $4$.
$4y(4y+1)$
$4(4y+1)$
$4y(y+1)$
$4y(2y+1)$
9.
Мария почиства сама жилището си за 6 чàса, а нейната майка почиства същото жилище за 4 чàса. За колко чàса ще почистят жилището, ако работят заедно?
1 час и 44 минути
2 чàса и 24 минути
2,04 чàса
2 чàса
10.
На чертежа $S$
1
и $S$
2
са симетралите съответно на страните $AC$ и $BC$ в триъгълника $ABC$. Ако $AB + KP = 24$ $cm$, дължината на $CO$ е:
$8$ $cm$
$12$ $cm$
$4$ $cm$
$6$ $cm$
11.
Многочленът $2(2y − 5) − 4y(2y − 5)$ е тъждествено равен на:
$2(2y − 5)(1 + 2y)$
$−2y(2y − 5)$
$4(2y − 5)(1 − y)$
$2(2y − 5)(1 − 2y)$
12.
Решенията на неравенството ${2x-3 \over 3}>{2x+3 \over 2}$ са:
${x>3}$
${x<-17}$
${x>-7,5}$
${x<-7,5}$
13.
Двама работници трябва да свършат определена работа. Единият може да свърши сам работата за $4$ $h$, а другият - за $12$ $h$. Първоначално единият работи сам $t$ $min$, след което двамата довършват работата. Ако $t$ е не повече от $20$ $min$, за колко възможно най-малко часа двамата работници ще свършат работата?
$3$ $h$
$2$ $h$ $45$ $min$
$5$ $h$
$3$ $h$ $45$ $min$
14.
В $ΔABC$ $AL$ е ъглополовяща. Големината на \(\sphericalangle ALB\) е:
95°
70°
75°
85°
15.
Моторна лодка изминава разстоянието между две пристанища по течението за 3 часа, а срещу течението – за 4 часа. Ако скоростта на течението е 6 км/ч, то разстоянието между пристанищата е:
168 км
126 км
144 км
42 км
16.
Цената за пътуване с такси се определя по формулата $C = 1,20 + 0,80.k$, където $k$ са изминатите километри, а $C$ е цената в левове. От тази формула изминатите километри $k$ за дадена цена $С$ се определят така:
$k = (C + 1,20).0,80$
$k = (C – 1,20):0,80$
$k = 0,80.C – 1,20$
$k = C:2,00$
17.
От София до Бургас разстоянието по определен маршрут е 390 km. От двата града един срещу друг тръгнали две превозни средства, като едното превозно средство се движело със скорост, която е с 10 km/h по-голяма от скоростта на другото превозно средство. След 3 часа пътуване двете превозни средства се намирали на разстояние 24 km един от друг? Каква е възможно най-голямата скорост, с която се е движело по-бавното превозно средство?
60 km/h
65 km/h
54 km/h
64 km/h
18.
На чертежа $CD$ е височина на правоъгълния $ΔABC$ към хипотенузата му $AB$. Точката M е среда на страната $AC$, а точката $N$ е среда на страната $BC$. Ако $AC = 6$ $cm$ и $BC = $8$ $cm$, лицето на $ΔDN$M е:
6
cm
²
7
cm
²
14
cm
²
12
cm
²
За равнобедрения $ΔABC$ е дадено, че \(\sphericalangle ACB\) = 120° и $AL$ е ъглополовяща на \(\sphericalangle BAC\). На страната $AB$ е взета точка $M$ така, че $AM = AC$.
19.
Намерете големината на \(\sphericalangle ALM\) в градуси.
60°
55°
45°
35°
20.
Ако $CL = m$ и $BL = n$, намерете периметърът на $ΔMBL$.
$3m + n$
$2n + m$
$2m + n$
$m + 3n$
Диаграмата показва броя на учениците стипендианти за учебната 2018/2019 и 2019/2020 година от едно училище.
21.
Какво е отношението на броя на учениците, получили стипендии през 2018/2019 година, към този през 2019/2020 година?
\( \frac {31} {41}\)
\( \frac 5 7 \)
\( \frac 3 4\)
\( \frac 4 5 \)
22.
Рaзмерът на една месечна стипендия през 2018/2019 г. е бил 105 лева, а през 2019/2020 г. – 135 лева. Всеки от стипендиантите получава стипендия през 10 от дванайсетте месеца на учебната година. Колко лева са необходими, за да се изплатят стипендиите общо за двете учебни години в училището?