Тест по математика за VII клас, 2020-случайни въпроси


НАЦИОНАЛНО ВЪНШНО ОЦЕНЯВАНЕ ПО МАТЕМАТИКА – VII клас

Примерен тест със случайни въпроси, модул 1


7и клас - Математика - Външно оценяване
1. Ако $b=\frac{1}{6}$, то $(b–1)–3(1–b)+4(2b–1)$ е равно на:







2. Кое числово равенство е вярно?







3. Турист изкачва един връх за 6 чàса със скорост $x$ km/h и се връща обратно за 3 пъти по-малко време, като се движи с 4 km/h по-бързо. Уравнението, което изразява тази зависимост, е:







4. Кое от неравенствата НЯМА решение?







5. Коренът на уравнението $2 – 2x = \frac{1}{2}$ е:







6. По данните от чертежа ъглите $x$ и $y$ са в отношение:

 

 







7. Мярката на \(\sphericalangle BCM\) от чертежа е:








8. Кой израз е тъждествено равен на многочлена, отговарящ на следното описание:
Към втората степен на $4y$ е прибавено произведението на $y$ и $4$.







9. Намалих 6 пъти естественото число $n$ и получих число, по-голямо от 1,8. Най-малкото число $n$, за което това е вярно, е:







10. Даден е равностранен триъгълник $ABC$. На лъча $BA$ е построена отсечката $AM = AC$ (точката $A$ е между точките $M$ и $B$) и на лъча $AB$ е построена отсечката $BN = BC$ (точката $B$ е между точките $N$ и $A$). Тогава \(\sphericalangle MCN\) е равен на:







11. Изразът $(a – 1)^3 – (a – 1)(a^2 + a + 1)$ е тъждествено равен на:







12. По-големият корен на уравнението $(x + 2)^3 – (3x + 2) (x + 4) = x (-x – 1)^2$ е:







13. Надя, Ели, Руми и Ира продават билети за благотворителен концерт. Диаграмата показва броя на билетите, които всяка от тях е продала. Ира е продала 30 билета.

Колко билета общо са продали Надя, Ели и Руми?







14. На чертежа $ΔABC$ е правоъгълен, $CM$ е медиана към хипотенузата $AB$, $CH$ е височина към хипотенузата, $CM = BC$ и $CH = 3$ $cm$. Дължината на страната $AC$ е:







15. След намаление на цената с 20% готварска печка струва 220 лв. Цената на печката
преди намалението е била:






16. Ако едно естествено число умножим с 4 и от полученото произведение извадим 7,
ще се получи число, по-малко от 13. Сборът на всички естествени числа с това
свойство е:






17. Зар се хвърля три пъти и получените точки се събират. Броят на възможните сборове на трите числа е:





18. На чертежа $AM$ и $BN$ са ъглополовящи в $ΔABC$.

Кое равенство вярно изразява ъгъл $x$ чрез ъгъл $δ$?







За равнобедрения $ΔABC$ е дадено, че \(\sphericalangle ACB\) = 120° и $AL$ е ъглополовяща на \(\sphericalangle BAC\). На страната $AB$ е взета точка $M$ така, че $AM = AC$.



19. Намерете големината на \(\sphericalangle ALM\) в градуси.







20. Ако $CL = m$ и $BL = n$, намерете периметърът на $ΔMBL$.







Спортните екипи на учениците в едно училище са четири вида, както са показани на диаграмата.



21. Каква част от учениците имат в екипа си жълт цвят?







22. Каква част от учениците нямат в екипа си червен цвят?







23. Какъв е процентът на учениците, които имат син цвят в екипа си?







24. Колко градуса е ъгълът на сектора на учениците с червено-сините екипи?