Тест по математика за VII клас, 2020-случайни въпроси


НАЦИОНАЛНО ВЪНШНО ОЦЕНЯВАНЕ ПО МАТЕМАТИКА – VII клас

Примерен тест със случайни въпроси, модул 1


7и клас - Математика - Външно оценяване
1. Изразът $x + \frac{1}{4}$ е тъждествено равен на:







2. Изразът $(1 − 2x)^2$ е тъждествено равен на:







3. Многочленът $k^2 − 36$ е тъждествено равен на:







4. Кое от неравенствата НЯМА решение?







5. Коренът на уравнението $(5 + x) (5 – x) – 5x (3 – \frac{1}{5}x) = 20$ е:







6. На чертежа правите $m$ и $n$ са успоредни и \(\sphericalangle MAN\) =60°. Ако \(\sphericalangle NAQ\) : \(\sphericalangle AQN\) = 3:1, тогава \(\sphericalangle NQA\) е равен на:








7. На чертежа правите $a$ и $b$ са успоредни. Ъгъл $α$ е равен на:







8. Корените на уравнението $2 |1 – x| – 5 = –1$ са:







9. Мария почиства сама жилището си за 6 чàса, а нейната майка почиства същото жилище за 4 чàса. За колко чàса ще почистят жилището, ако работят заедно?







10. В $ΔABC$ $BM$ е медиана. Върху лъча $BM$ е взета точка $P$ така, че $ΔAMP \cong ΔCMB$. Ако \(\sphericalangle ABM\) = 30° и \(\sphericalangle APB\) = 40°, на колко градуса е равен \(\sphericalangle ABC\)?
 

 







11. Изразът $(a – 1)^3 – (a – 1)(a^2 + a + 1)$ е тъждествено равен на:







12. По-големият корен на уравнението $(x + 2)^3 – (3x + 2) (x + 4) = x (-x – 1)^2$ е:







13. Басейн се пълни от два крана. Единият може да го напълни за 20 минути, а другият – за 30 минути. За колко минути ще се напълни басейнът, ако се отворят и двата крана едновременно?







14. На чертежа точката $D$ от отсечката $AC$ е избрана така, че $AD = DB = BC$. Мярката на \(\sphericalangle ABC\) e:







15. Моторна лодка изминава разстоянието между две пристанища по течението за 3 часа, а срещу течението – за 4 часа. Ако скоростта на течението е 6 км/ч, то разстоянието между пристанищата е:







16. Ако едно естествено число умножим с 4 и от полученото произведение извадим 7,
ще се получи число, по-малко от 13. Сборът на всички естествени числа с това
свойство е:






17. Зар се хвърля три пъти и получените точки се събират. Броят на възможните сборове на трите числа е:





18. На чертежа $AM$ и $BN$ са ъглополовящи в $ΔABC$.

Кое равенство вярно изразява ъгъл $x$ чрез ъгъл $δ$?







Диагоналите на четириъгълника $ABCD$ ($AB$ \( \neq \) $BC$) се пресичат в точка $O$. Диагоналът $AC$ е ъглополовяща на \(\sphericalangle BAD\) и на \(\sphericalangle BCD\).

 



19. Намерете мярката на \(\sphericalangle AOD\)


20. Намерете и запишете (в кв.см) лицето на четириъгълника ABCD.




21. Намерете и запишете (в см) обиколката на четириъгълника ABCD.




22. Намерете и запишете отсечката, която е равна на отсечката AD.


Диаграмата показва броя на учениците стипендианти за учебната 2018/2019 и 2019/2020 година от едно училище.



23. Какво е отношението на броя на учениците, получили стипендии през 2018/2019 година, към този през 2019/2020 година?







24. Рaзмерът на една месечна стипендия през 2018/2019 г. е бил 105 лева, а през 2019/2020 г. – 135 лева. Всеки от стипендиантите получава стипендия през 10 от дванайсетте месеца на учебната година. Колко лева са необходими, за да се изплатят стипендиите общо за двете учебни години в училището?