Решени тестове
Вход
Учебни помагала
Контакти
Вход с Facebook
4
ти
клас
5
и
клас
6
и
клас
7
и
клас
8
и
клас
9
и
клас
12
и
клас
10
и
клас
Езици
Програмиране
Занимателни тестове
Тест по математика за VII клас, 2020-случайни въпроси
НАЦИОНАЛНО ВЪНШНО ОЦЕНЯВАНЕ ПО МАТЕМАТИКА – VII клас
Примерен тест със
с
лучайни въпроси
, модул 1
7
и
клас - Математика - Външно оценяване
1.
Изразът $x + \frac{1}{4}$ е тъждествено равен на:
$x+4$
$x+1,4$
$4x+1$
$x+0,25$
2.
Кое числово равенство е вярно?
$\frac{1}{3} + \frac{1}{5} = \frac{1+1}{3.5}$
$\frac{1}{3} + \frac{1}{5} = \frac{5+3}{3.5}$
$\frac{1}{3} + \frac{1}{5} = \frac{1+1}{3+5}$
$\frac{1}{3} + \frac{1}{5} = \frac{1}{3+5}$
3.
При $a=–1$ най-малка стойност има изразът:
$a^3$
$a^2–2$
$a^2$
$a^3–1$
4.
Посочете невярното равенство:
$\frac{a^2}{9} – \frac{2ab}{3} + b^2 = (\frac{a}{3} + b)^2$
$x^3 + 6x^2 + (2x + 8) = (x + 2)^3$
$64 – 16a + a^2 = (8 – a)^2$
$x^2 – 6x + 9 = (x – 3)^2$
5.
Коренът на уравнението $(5 + x) (5 – x) – 5x (3 – \frac{1}{5}x) = 20$ е:
$3$
$– 3$
$2$
$\frac{1}{3}$
6.
По данните от чертежа ъглите $x$ и $y$ са в отношение:
5:1
7:2
4:1
3:1
7.
Мярката на \(\sphericalangle BCM\) от чертежа е:
110°
80°
100°
140°
8.
Числата 0 и 2 са корените на уравнението:
$|x+1|=1$
$−|x−1|=−1$
$|x−1|=−1$
$|x−2|=0$
9.
Намалих 6 пъти естественото число $n$ и получих число, по-голямо от 1,8. Най-малкото число $n$, за което това е вярно, е:
10
11
12
1
10.
Даден е равностранен триъгълник $ABC$. На лъча $BA$
→
е построена отсечката $AM = AC$ (точката $A$ е между точките $M$ и $B$) и на лъча $AB$
→
е построена отсечката $BN = BC$ (точката $B$ е между точките $N$ и $A$). Тогава \(\sphericalangle MCN\) е равен на:
150°
135°
120°
180°
11.
Многочленът $2(2y − 5) − 4y(2y − 5)$ е тъждествено равен на:
$−2y(2y − 5)$
$2(2y − 5)(1 − 2y)$
$4(2y − 5)(1 − y)$
$2(2y − 5)(1 + 2y)$
12.
Посочете едно цяло число и едно дробно число, които са решения на неравенството $9 ≤ –3x$.
–3, –4.3
2, 2.5
–27, –2.2
–2, –2.5
13.
Камион и лека кола тръгват едновременно един срещу друг от два пункта, които са на разстояние $400$ $km$ един от друг. Ако превозните средства се движат с постоянна скорост, съответно $60$ $km/h$ и $90$ $km/h$ , те ще се срещнат след:
$2$ $h$ $36$ $min$
$2$ $h$
$2$ $h$ $40$ $min$
$2$ $h$ $20$ $min$
14.
На чертежа $ΔABC$ е правоъгълен, $CM$ е медиана към хипотенузата $AB$, $CH$ е височина към хипотенузата, $CM = BC$ и $CH = 3$ $cm$. Дължината на страната $AC$ е:
6 cm
4 cm
5 cm
3 cm
15.
Моторна лодка изминава разстоянието между две пристанища по течението за 3 часа, а срещу течението – за 4 часа. Ако скоростта на течението е 6 км/ч, то разстоянието между пристанищата е:
168 км
126 км
42 км
144 км
16.
Ученици от едно училище купили 40 билета за театър за 488 лева. Един билет на партера струва 14 лева, а един билет на балкона струва 10 лева. По колко билета са купили от двата вида?
25 и 15
23 и 17
22 и 18
24 и 16
17.
След като похарчил $\frac{4}{5}$ от парите, които имал, на Мони му останали 20 лева. Колко
лева е похарчил Мони?
16
25
80
100
18.
Обемът на дадения на чертежа прав кръгов конус е:
$15 \pi \space см^3$
$4 \pi \space см^3$
$36 \pi \space см^3$
$12 \pi \space см^3$
За равнобедрения $ΔABC$ е дадено, че \(\sphericalangle ACB\) = 120° и $AL$ е ъглополовяща на \(\sphericalangle BAC\). На страната $AB$ е взета точка $M$ така, че $AM = AC$.
19.
Намерете големината на \(\sphericalangle ALM\) в градуси.
60°
55°
35°
45°
20.
Ако $CL = m$ и $BL = n$, намерете периметърът на $ΔMBL$.
$3m + n$
$2m + n$
$m + 3n$
$2n + m$
Диаграмата показва броя на учениците стипендианти за учебната 2018/2019 и 2019/2020 година от едно училище.
21.
Какво е отношението на броя на учениците, получили стипендии през 2018/2019 година, към този през 2019/2020 година?
\( \frac 3 4\)
\( \frac 4 5 \)
\( \frac 5 7 \)
\( \frac {31} {41}\)
22.
Рaзмерът на една месечна стипендия през 2018/2019 г. е бил 105 лева, а през 2019/2020 г. – 135 лева. Всеки от стипендиантите получава стипендия през 10 от дванайсетте месеца на учебната година. Колко лева са необходими, за да се изплатят стипендиите общо за двете учебни години в училището?