Решени тестове
Вход
Учебни помагала
Контакти
Вход с Facebook
4
ти
клас
5
и
клас
6
и
клас
7
и
клас
8
и
клас
9
и
клас
12
и
клас
10
и
клас
Езици
Програмиране
Занимателни тестове
Тест по математика за VII клас, 2020-случайни въпроси
НАЦИОНАЛНО ВЪНШНО ОЦЕНЯВАНЕ ПО МАТЕМАТИКА – VII клас
Примерен тест със
с
лучайни въпроси
, модул 1
7
и
клас - Математика - Външно оценяване
1.
Изразът $x + \frac{1}{4}$ е тъждествено равен на:
$x+1,4$
$x+4$
$4x+1$
$x+0,25$
2.
Кое числово равенство е вярно?
$\frac{1}{3} + \frac{1}{5} = \frac{1}{3+5}$
$\frac{1}{3} + \frac{1}{5} = \frac{5+3}{3.5}$
$\frac{1}{3} + \frac{1}{5} = \frac{1+1}{3.5}$
$\frac{1}{3} + \frac{1}{5} = \frac{1+1}{3+5}$
3.
Нормалният вид на $(x – 0,2)^2$ е многочленът:
$x^2 – 0,4$
$x^2 – 0,4x + 0,04$
$x^2 – 0,4x + 0,4$
$x^2 + 0,04$
4.
Посочете невярното равенство:
$x^3 + 6x^2 + (2x + 8) = (x + 2)^3$
$64 – 16a + a^2 = (8 – a)^2$
$\frac{a^2}{9} – \frac{2ab}{3} + b^2 = (\frac{a}{3} + b)^2$
$x^2 – 6x + 9 = (x – 3)^2$
5.
Коренът на уравнението $2 – 2x = \frac{1}{2}$ е:
$\frac{3}{4}$
$1\frac{1}{4}$
$1\frac{1}{2}$
$0$
6.
По данните от чертежа ъглите $x$ и $y$ са в отношение:
7:2
3:1
4:1
5:1
7.
На чертежа правите $a$ и $b$ са успоредни. Ъгъл $α$ е равен на:
85°
115°
75°
105°
8.
Корените на уравнението $2 |1 – x| – 5 = –1$ са:
–1 и –3
1 и –3
–1 и 3
1 и 3
9.
Колко грама захар има в 500 грама 5% захарен разтвор?
100
250
25
5
10.
На чертежа $S$
1
и $S$
2
са симетралите съответно на страните $AC$ и $BC$ в триъгълника $ABC$. Ако $AB + KP = 24$ $cm$, дължината на $CO$ е:
$6$ $cm$
$12$ $cm$
$8$ $cm$
$4$ $cm$
11.
Изразът $a^2 + 2a – 3$ е тъждествено равен на:
$(2a – 1) (\frac{a}{2} + 3)$
$(a + 3) (a – 1)$
$(a^2 + 1) (a – 3)$
$a (a + 3) – 3$
12.
Коренът на уравнението $(x − 1)^2 − x(x − 1) = 0$ е:
1
2
−2
1
13.
Двама работници трябва да свършат определена работа. Единият може да свърши сам работата за $4$ $h$, а другият - за $12$ $h$. Първоначално единият работи сам $t$ $min$, след което двамата довършват работата. Ако $t$ е не повече от $20$ $min$, за колко възможно най-малко часа двамата работници ще свършат работата?
$3$ $h$
$2$ $h$ $45$ $min$
$3$ $h$ $45$ $min$
$5$ $h$
14.
На чертежа $ΔABC$ е правоъгълен, $CM$ е медиана към хипотенузата $AB$, $CH$ е височина към хипотенузата, $CM = BC$ и $CH = 3$ $cm$. Дължината на страната $AC$ е:
4 cm
6 cm
3 cm
5 cm
15.
След намаление на цената с 20% готварска печка струва 220 лв. Цената на печката
преди намалението е била:
1100 лв.
264 лв.
275 лв.
240 лв.
16.
Ученици от едно училище купили 40 билета за театър за 488 лева. Един билет на партера струва 14 лева, а един билет на балкона струва 10 лева. По колко билета са купили от двата вида?
25 и 15
24 и 16
22 и 18
23 и 17
17.
Зар се хвърля три пъти и получените точки се събират. Броят на възможните сборове на трите числа е:
18
16
17
11
18.
Ъглополовящите $AM$ и $BN$ в успоредника $ABCD$ разделят страната $DC$ на три равни части. Дължината на страната $BC$ е $a$ cm. Периметърът на успоредника $ABCD$ в сантиметри е равен на:
$16a$
$8a$
$6a$
$10a$
Диагоналите на четириъгълника $ABCD$ ($AB$ \( \neq \) $BC$) се пресичат в точка $O$. Диагоналът $AC$ е ъглополовяща на \(\sphericalangle BAD\) и на \(\sphericalangle BCD\).
19.
Намерете мярката на \(\sphericalangle AOD\)
20.
Намерете и запишете (в кв.см) лицето на четириъгълника
ABCD.
21.
Намерете и запишете (в см) обиколката на четириъгълника
ABCD.
22.
Намерете и запишете отсечката, която е равна на отсечката
AD
.
Спортните екипи на учениците в едно училище са четири вида, както са показани на диаграмата.
23.
Каква част от учениците
имат
в екипа си жълт цвят?
$\frac {1}{2}$
$\frac {1}{3}$
$\frac {2}{3}$
$\frac {1}{4}$
24.
Каква част от учениците
нямат
в екипа си червен цвят?
$\frac {7}{12}$
$\frac {1}{3}$
$\frac {5}{6}$
$\frac {2}{3}$
25.
Какъв е процентът на учениците, които имат син цвят в екипа си?
35%
25%
20%
23%
26.
Колко градуса е ъгълът на сектора на учениците с червено-сините екипи?
57°
55°
60°
45°