Решени тестове
Вход
Учебни помагала
Контакти
Вход с Facebook
4
ти
клас
5
и
клас
6
и
клас
7
и
клас
8
и
клас
9
и
клас
12
и
клас
10
и
клас
Езици
Програмиране
Занимателни тестове
Тест по математика за VII клас, 2020-случайни въпроси
НАЦИОНАЛНО ВЪНШНО ОЦЕНЯВАНЕ ПО МАТЕМАТИКА – VII клас
Примерен тест със
с
лучайни въпроси
, модул 1
7
и
клас - Математика - Външно оценяване
1.
Стойността на израза $12 – (2,5 – b)$ при $b = –2,5$ е:
8
17
12
7
2.
Кое числово равенство е вярно?
$\frac{1}{3} + \frac{1}{5} = \frac{1}{3+5}$
$\frac{1}{3} + \frac{1}{5} = \frac{1+1}{3+5}$
$\frac{1}{3} + \frac{1}{5} = \frac{5+3}{3.5}$
$\frac{1}{3} + \frac{1}{5} = \frac{1+1}{3.5}$
3.
Нормалният вид на $(x – 0,2)^2$ е многочленът:
$x^2 – 0,4x + 0,4$
$x^2 – 0,4$
$x^2 – 0,4x + 0,04$
$x^2 + 0,04$
4.
Посочете невярното равенство:
$x^2 – 6x + 9 = (x – 3)^2$
$\frac{a^2}{9} – \frac{2ab}{3} + b^2 = (\frac{a}{3} + b)^2$
$64 – 16a + a^2 = (8 – a)^2$
$x^3 + 6x^2 + (2x + 8) = (x + 2)^3$
5.
Коренът на уравнението $(5 + x) (5 – x) – 5x (3 – \frac{1}{5}x) = 20$ е:
$2$
$– 3$
$\frac{1}{3}$
$3$
6.
На чертежа $△ABC$ е разностранен. Ако $AO = OB$, то точка $O$ лежи на:
ъглополовящата на \(\sphericalangle ACB\)
симетралата на страната $AB$
медианата през $C$ към $AB$
височината през $C$ към $AB$
7.
Мярката на \(\sphericalangle BCM\) от чертежа е:
110°
140°
80°
100°
8.
Кой израз е тъждествено равен на многочлена, отговарящ на следното описание:
Към втората степен на $4y$ е прибавено произведението на $y$ и $4$.
$4y(y+1)$
$4y(2y+1)$
$4y(4y+1)$
$4(4y+1)$
9.
Мария почиства сама жилището си за 6 чàса, а нейната майка почиства същото жилище за 4 чàса. За колко чàса ще почистят жилището, ако работят заедно?
1 час и 44 минути
2 чàса
2 чàса и 24 минути
2,04 чàса
10.
В $ΔABC$ $BM$ е медиана. Върху лъча $BM$ е взета точка $P$ така, че $ΔAMP \cong ΔCMB$. Ако \(\sphericalangle ABM\) = 30° и \(\sphericalangle APB\) = 40°, на колко градуса е равен \(\sphericalangle ABC\)?
110°
40°
30°
70°
11.
Изразът $mx-2x-2y+my$ е тъждествено равен на израза:
$(x+y)(m-2)$
$(x-y)(m+2)$
$(x-y)(m-2)$
$(x+y)(m+2)$
12.
По-големият корен на уравнението $(x + 2)^3 – (3x + 2) (x + 4) = x (-x – 1)^2$ е:
–3
3
7
0
13.
Камион и лека кола тръгват едновременно един срещу друг от два пункта, които са на разстояние $400$ $km$ един от друг. Ако превозните средства се движат с постоянна скорост, съответно $60$ $km/h$ и $90$ $km/h$ , те ще се срещнат след:
$2$ $h$ $20$ $min$
$2$ $h$ $36$ $min$
$2$ $h$
$2$ $h$ $40$ $min$
14.
На чертежа точката $D$ от отсечката $AC$ е избрана така, че $AD = DB = BC$. Мярката на \(\sphericalangle ABC\) e:
43°
86°
51°
8°
15.
Даден е правоъгълник с дължини на страните две последователни нечетни числа. Ако намалим по-малката му страна с $4$ $cm$, а другата запазим, ще получим правоъгълник, лицето на който е с $36$ $cm^2$ по-малко от лицето на дадения правоъгълник. Лицето на дадения правоъгълник е:
$63$ $cm^2$
$99$ $cm^2$
$80$ $cm^2$
$43$ $cm^2$
16.
Ако едно естествено число умножим с 4 и от полученото произведение извадим 7,
ще се получи число, по-малко от 13. Сборът на всички естествени числа с това
свойство е:
10
15
11
12
17.
След като похарчил $\frac{4}{5}$ от парите, които имал, на Мони му останали 20 лева. Колко
лева е похарчил Мони?
100
25
80
16
18.
На чертежа $CD$ е височина на правоъгълния $ΔABC$ към хипотенузата му $AB$. Точката M е среда на страната $AC$, а точката $N$ е среда на страната $BC$. Ако $AC = 6$ $cm$ и $BC = $8$ $cm$, лицето на $ΔDN$M е:
14
cm
²
6
cm
²
7
cm
²
12
cm
²
За равнобедрения $ΔABC$ е дадено, че \(\sphericalangle ACB\) = 120° и $AL$ е ъглополовяща на \(\sphericalangle BAC\). На страната $AB$ е взета точка $M$ така, че $AM = AC$.
19.
Намерете големината на \(\sphericalangle ALM\) в градуси.
60°
35°
55°
45°
20.
Ако $CL = m$ и $BL = n$, намерете периметърът на $ΔMBL$.
$2m + n$
$3m + n$
$m + 3n$
$2n + m$
Диаграмата показва броя на учениците стипендианти за учебната 2018/2019 и 2019/2020 година от едно училище.
21.
Какво е отношението на броя на учениците, получили стипендии през 2018/2019 година, към този през 2019/2020 година?
\( \frac 4 5 \)
\( \frac 5 7 \)
\( \frac {31} {41}\)
\( \frac 3 4\)
22.
Рaзмерът на една месечна стипендия през 2018/2019 г. е бил 105 лева, а през 2019/2020 г. – 135 лева. Всеки от стипендиантите получава стипендия през 10 от дванайсетте месеца на учебната година. Колко лева са необходими, за да се изплатят стипендиите общо за двете учебни години в училището?