Тест по математика за VII клас, 2020-случайни въпроси


НАЦИОНАЛНО ВЪНШНО ОЦЕНЯВАНЕ ПО МАТЕМАТИКА – VII клас

Примерен тест със случайни въпроси, модул 1


7и клас - Математика - Външно оценяване
1. Ако $b=\frac{1}{6}$, то $(b–1)–3(1–b)+4(2b–1)$ е равно на:







2. Изразът $(1 − 2x)^2$ е тъждествено равен на:







3. Нормалният вид на $(x – 0,2)^2$ е многочленът:







4. Коренът на уравнението $3(4 – x) = –4$ е:







5. Коренът на уравнението $2 – 2x = \frac{1}{2}$ е:







6. На чертежа $△ABC$ е разностранен. Ако $AO = OB$, то точка $O$ лежи на:







7. Мярката на \(\sphericalangle BCM\) от чертежа е:








8. Числата 0 и 2 са корените на уравнението:





9. Намалих 6 пъти естественото число $n$ и получих число, по-голямо от 1,8. Най-малкото число $n$, за което това е вярно, е:







10. В $ΔABC$ $BM$ е медиана. Върху лъча $BM$ е взета точка $P$ така, че $ΔAMP \cong ΔCMB$. Ако \(\sphericalangle ABM\) = 30° и \(\sphericalangle APB\) = 40°, на колко градуса е равен \(\sphericalangle ABC\)?
 

 







11. Изразът $(a – 1)^3 – (a – 1)(a^2 + a + 1)$ е тъждествено равен на:







12. Решенията на неравенството ${2x-3 \over 3}>{2x+3 \over 2}$ са:





13. Басейн се пълни от два крана. Единият може да го напълни за 20 минути, а другият – за 30 минути. За колко минути ще се напълни басейнът, ако се отворят и двата крана едновременно?







14. На чертежа точката $D$ от отсечката $AC$ е избрана така, че $AD = DB = BC$. Мярката на \(\sphericalangle ABC\) e:







15. Моторна лодка изминава разстоянието между две пристанища по течението за 3 часа, а срещу течението – за 4 часа. Ако скоростта на течението е 6 км/ч, то разстоянието между пристанищата е:







16. Две от страните на триъгълник са с дължини 5 cm и 7 cm, а третата има дължина, която се изразява с естествено число сантиметри. Броят на триъгълниците, които отговарят на това условие, е:





17. От София до Бургас разстоянието по определен маршрут е 390 km. От двата града един срещу друг тръгнали две превозни средства, като едното превозно средство се движело със скорост, която е с 10 km/h по-голяма от скоростта на другото превозно средство. След 3 часа пътуване двете превозни средства се намирали на разстояние 24 km един от друг? Каква е възможно най-голямата скорост, с която се е движело по-бавното превозно средство?







18. На чертежа $AM$ и $BN$ са ъглополовящи в $ΔABC$.

Кое равенство вярно изразява ъгъл $x$ чрез ъгъл $δ$?







За равнобедрения $ΔABC$ е дадено, че \(\sphericalangle ACB\) = 120° и $AL$ е ъглополовяща на \(\sphericalangle BAC\). На страната $AB$ е взета точка $M$ така, че $AM = AC$.



19. Намерете големината на \(\sphericalangle ALM\) в градуси.







20. Ако $CL = m$ и $BL = n$, намерете периметърът на $ΔMBL$.







Спортните екипи на учениците в едно училище са четири вида, както са показани на диаграмата.



21. Каква част от учениците имат в екипа си жълт цвят?







22. Каква част от учениците нямат в екипа си червен цвят?







23. Какъв е процентът на учениците, които имат син цвят в екипа си?







24. Колко градуса е ъгълът на сектора на учениците с червено-сините екипи?