Тест по математика за VII клас, 2020-случайни въпроси


НАЦИОНАЛНО ВЪНШНО ОЦЕНЯВАНЕ ПО МАТЕМАТИКА – VII клас

Примерен тест със случайни въпроси, модул 1


7и клас - Математика - Външно оценяване
1. Стойността на израза $12 – (6 + m)$ при $m = –12$ е:







2. Изразът $(1 − 2x)^2$ е тъждествено равен на:







3. При $a=–1$ най-малка стойност има изразът:







4. Кое от неравенствата НЯМА решение?







5. Коренът на уравнението $(5 + x) (5 – x) – 5x (3 – \frac{1}{5}x) = 20$ е:







6. На чертежа $AC = BC$. Мярката на \(\sphericalangle ACB\) е:







7. На чертежа $OL$ е ъглополовяща на \(\sphericalangle AOC\). Ако мярката на \(\sphericalangle AOC\) е с 40% по-голяма от мярката на \(\sphericalangle BOC\), то мярката на \(\sphericalangle BOL\) е:







8. Числата 0 и 2 са корените на уравнението:





9. Мария почиства сама жилището си за 6 чàса, а нейната майка почиства същото жилище за 4 чàса. За колко чàса ще почистят жилището, ако работят заедно?







10. На чертежа $S$1 и $S$2 са симетралите съответно на страните $AC$ и $BC$ в триъгълника $ABC$. Ако $AB + KP = 24$ $cm$, дължината на $CO$ е:







11. Изразът $(a – 1)^3 – (a – 1)(a^2 + a + 1)$ е тъждествено равен на:







12. Коренът на уравнението $(x − 1)^2 − x(x − 1) = 0$ е:





13. Камион и лека кола тръгват едновременно един срещу друг от два пункта, които са на разстояние $400$ $km$ един от друг. Ако превозните средства се движат с постоянна скорост, съответно $60$ $km/h$ и $90$ $km/h$ , те ще се срещнат след:







14. На чертежа $ΔABC$ е равнобедрен ($AC=BC$). Външният ъгъл при върха $C$ е равен на 86° и \(\sphericalangle DAB\)=15° . Мярката на $x$ e:







15. Моторна лодка изминава разстоянието между две пристанища по течението за 3 часа, а срещу течението – за 4 часа. Ако скоростта на течението е 6 км/ч, то разстоянието между пристанищата е:







16. Ако едно естествено число умножим с 4 и от полученото произведение извадим 7,
ще се получи число, по-малко от 13. Сборът на всички естествени числа с това
свойство е:






17. Бабата на Камен го поканила за обяд в 12 часá. След като избрал маршрута, той преценил, че ако тръгне в 10 часá и 30 минути с ролери, ще закъснее с 15 минути. Затова Камен тръгнал в 10 часá и 30 минути с велосипед по същия маршрут и пристигнал с 20 минути по-рано от уречения час. Скоростта на Камен с ролери е със 7 кm/h по-малка, отколкото скоростта му с велосипед. Колко километра е маршрутът от дома на Камен до дома на баба му?





18. На чертежа $CD$ е височина на правоъгълния $ΔABC$ към хипотенузата му $AB$. Точката M е среда на страната $AC$, а точката $N$ е среда на страната $BC$. Ако $AC = 6$ $cm$ и $BC = $8$ $cm$, лицето на $ΔDN$M е:








За равнобедрения $ΔABC$ е дадено, че \(\sphericalangle ACB\) = 120° и $AL$ е ъглополовяща на \(\sphericalangle BAC\). На страната $AB$ е взета точка $M$ така, че $AM = AC$.



19. Намерете големината на \(\sphericalangle ALM\) в градуси.







20. Ако $CL = m$ и $BL = n$, намерете периметърът на $ΔMBL$.







Спортните екипи на учениците в едно училище са четири вида, както са показани на диаграмата.



21. Каква част от учениците имат в екипа си жълт цвят?







22. Каква част от учениците нямат в екипа си червен цвят?







23. Какъв е процентът на учениците, които имат син цвят в екипа си?







24. Колко градуса е ъгълът на сектора на учениците с червено-сините екипи?