Тест по математика за VII клас, 2020-случайни въпроси


НАЦИОНАЛНО ВЪНШНО ОЦЕНЯВАНЕ ПО МАТЕМАТИКА – VII клас

Примерен тест със случайни въпроси, модул 1


7и клас - Математика - Външно оценяване
1. Изразът $x + \frac{1}{4}$ е тъждествено равен на:







2. Кое числово равенство е вярно?







3. Турист изкачва един връх за 6 чàса със скорост $x$ km/h и се връща обратно за 3 пъти по-малко време, като се движи с 4 km/h по-бързо. Уравнението, което изразява тази зависимост, е:







4. При $а = –2$ изразът $5–3(a–b)$ e тъждествено равен на:







5. Уравнението $−x^2 = (4 − x)x$ е еквивалентно на:





6. На чертежа правите $m$ и $n$ са успоредни и \(\sphericalangle MAN\) =60°. Ако \(\sphericalangle NAQ\) : \(\sphericalangle AQN\) = 3:1, тогава \(\sphericalangle NQA\) е равен на:








7. На чертежа правите $a$, $b$ и $c$ са успоредни. Големината на ъгъл $ x $ е:







8. Кой израз е тъждествено равен на многочлена, отговарящ на следното описание:
Към втората степен на $4y$ е прибавено произведението на $y$ и $4$.







9. Колко грама захар има в 500 грама 5% захарен разтвор?







10. В $ΔABC$ $BM$ е медиана. Върху лъча $BM$ е взета точка $P$ така, че $ΔAMP \cong ΔCMB$. Ако \(\sphericalangle ABM\) = 30° и \(\sphericalangle APB\) = 40°, на колко градуса е равен \(\sphericalangle ABC\)?
 

 







11. Многочленът $2(2y − 5) − 4y(2y − 5)$ е тъждествено равен на:





12. По-големият корен на уравнението $(x + 2)^3 – (3x + 2) (x + 4) = x (-x – 1)^2$ е:







13. Басейн се пълни от два крана. Единият може да го напълни за 20 минути, а другият – за 30 минути. За колко минути ще се напълни басейнът, ако се отворят и двата крана едновременно?







14. На чертежа точката $D$ от отсечката $AC$ е избрана така, че $AD = DB = BC$. Мярката на \(\sphericalangle ABC\) e:







15. След намаление на цената с 20% готварска печка струва 220 лв. Цената на печката
преди намалението е била:






16. Цената за пътуване с такси се определя по формулата $C = 1,20 + 0,80.k$, където $k$ са изминатите километри, а $C$ е цената в левове. От тази формула изминатите километри $k$ за дадена цена $С$ се определят така:







17. От София до Бургас разстоянието по определен маршрут е 390 km. От двата града един срещу друг тръгнали две превозни средства, като едното превозно средство се движело със скорост, която е с 10 km/h по-голяма от скоростта на другото превозно средство. След 3 часа пътуване двете превозни средства се намирали на разстояние 24 km един от друг? Каква е възможно най-голямата скорост, с която се е движело по-бавното превозно средство?







18. На чертежа $AM$ и $BN$ са ъглополовящи в $ΔABC$.

Кое равенство вярно изразява ъгъл $x$ чрез ъгъл $δ$?







В $ΔABC$ отсечката $CH$ е височина и точка $Н$ е вътрешна за отсечката $АВ$. Точката $M$ е средата на $BC$ и $AH = CH = HM$. Точката $N$ е от отсечката $HB$ и е такава, че $HN = MN = NB$.


Даденият чертеж е само за илюстрация – не е начертан в мащаб и не е предназначен за директно измерване на дължини на отсечки и мерки на ъгли.



19. Намерете мярката на \(\sphericalangle CAB\).





20. Намерете мярката на \(\sphericalangle ABC\).







21. Намерете отношението $HN : BN$.





22. Намерете отношението на лицата $S$ΔNMH : $S$ΔCMH.







Спортните екипи на учениците в едно училище са четири вида, както са показани на диаграмата.



23. Каква част от учениците имат в екипа си жълт цвят?







24. Каква част от учениците нямат в екипа си червен цвят?







25. Какъв е процентът на учениците, които имат син цвят в екипа си?







26. Колко градуса е ъгълът на сектора на учениците с червено-сините екипи?