Решени тестове
Вход
Учебни помагала
Контакти
Вход с Facebook
4
ти
клас
5
и
клас
6
и
клас
7
и
клас
8
и
клас
9
и
клас
12
и
клас
10
и
клас
Езици
Програмиране
Занимателни тестове
Тест по математика за VII клас, 2020-случайни въпроси
НАЦИОНАЛНО ВЪНШНО ОЦЕНЯВАНЕ ПО МАТЕМАТИКА – VII клас
Примерен тест със
с
лучайни въпроси
, модул 1
7
и
клас - Математика - Външно оценяване
1.
Изразът $x + \frac{1}{4}$ е тъждествено равен на:
$x+1,4$
$4x+1$
$x+0,25$
$x+4$
2.
Ако $\frac{3^8.9^3}{27^3} = 3^m$, то $m$ е равно на:
2
3
4
5
3.
Многочленът $k^2 − 36$ е тъждествено равен на:
$(k − 6)^2$
$2(k − 18)$
$(k − 18)(k + 18)$
$(k − 6)(k + 6)$
4.
При $а = –2$ изразът $5–3(a–b)$ e тъждествено равен на:
$3b+11$
$11–3b$
$b+11$
$2+3b$
5.
Уравнението $−x^2 = (4 − x)x$ е еквивалентно на:
$0x = 4$
$4x = 1$
$x = x$
$−5x = 0$
6.
На чертежа $AC = BC$. Мярката на \(\sphericalangle ACB\) е:
75°
25°
50°
80°
7.
На чертежа правите $a$, $b$ и $c$ са успоредни. Големината на ъгъл $ x $ е:
42°
30°
18°
32°
8.
Числата 0 и 2 са корените на уравнението:
$|x−2|=0$
$|x+1|=1$
$|x−1|=−1$
$−|x−1|=−1$
9.
Намалих 6 пъти естественото число $n$ и получих число, по-голямо от 1,8. Най-малкото число $n$, за което това е вярно, е:
12
10
1
11
10.
На чертежа $S$
1
и $S$
2
са симетралите съответно на страните $AC$ и $BC$ в триъгълника $ABC$. Ако $AB + KP = 24$ $cm$, дължината на $CO$ е:
$8$ $cm$
$12$ $cm$
$4$ $cm$
$6$ $cm$
11.
Изразът $(a – 1)^3 – (a – 1)(a^2 + a + 1)$ е тъждествено равен на:
$–3a^2 + 3a$
$0$
$–2$
$3a^2 + 3a$
12.
Посочете едно цяло число и едно дробно число, които са решения на неравенството $9 ≤ –3x$.
–3, –4.3
–27, –2.2
–2, –2.5
2, 2.5
13.
Двама работници трябва да свършат определена работа. Единият може да свърши сам работата за $4$ $h$, а другият - за $12$ $h$. Първоначално единият работи сам $t$ $min$, след което двамата довършват работата. Ако $t$ е не повече от $20$ $min$, за колко възможно най-малко часа двамата работници ще свършат работата?
$2$ $h$ $45$ $min$
$3$ $h$ $45$ $min$
$5$ $h$
$3$ $h$
14.
На чертежа точката $D$ от отсечката $AC$ е избрана така, че $AD = DB = BC$. Мярката на \(\sphericalangle ABC\) e:
43°
8°
51°
86°
15.
В трамвай могат да пътуват не повече от 70 души. Половината от пътниците, качили се в трамвая на първата спирка, заели някои от седящите места. След първата спирка броят на пътниците се увеличил с 8%. Колко пътници са се качили на първата спирка?
49
42
50
54
16.
Ако едно естествено число умножим с 4 и от полученото произведение извадим 7,
ще се получи число, по-малко от 13. Сборът на всички естествени числа с това
свойство е:
10
12
15
11
17.
След като похарчил $\frac{4}{5}$ от парите, които имал, на Мони му останали 20 лева. Колко
лева е похарчил Мони?
80
100
16
25
18.
Ъглополовящите $AM$ и $BN$ в успоредника $ABCD$ разделят страната $DC$ на три равни части. Дължината на страната $BC$ е $a$ cm. Периметърът на успоредника $ABCD$ в сантиметри е равен на:
$16a$
$8a$
$6a$
$10a$
Диагоналите на четириъгълника $ABCD$ ($AB$ \( \neq \) $BC$) се пресичат в точка $O$. Диагоналът $AC$ е ъглополовяща на \(\sphericalangle BAD\) и на \(\sphericalangle BCD\).
19.
Намерете мярката на \(\sphericalangle AOD\)
20.
Намерете и запишете (в кв.см) лицето на четириъгълника
ABCD.
21.
Намерете и запишете (в см) обиколката на четириъгълника
ABCD.
22.
Намерете и запишете отсечката, която е равна на отсечката
AD
.
Диаграмата показва броя на учениците стипендианти за учебната 2018/2019 и 2019/2020 година от едно училище.
23.
Какво е отношението на броя на учениците, получили стипендии през 2018/2019 година, към този през 2019/2020 година?
\( \frac 3 4\)
\( \frac 4 5 \)
\( \frac {31} {41}\)
\( \frac 5 7 \)
24.
Рaзмерът на една месечна стипендия през 2018/2019 г. е бил 105 лева, а през 2019/2020 г. – 135 лева. Всеки от стипендиантите получава стипендия през 10 от дванайсетте месеца на учебната година. Колко лева са необходими, за да се изплатят стипендиите общо за двете учебни години в училището?