Тест по математика за VII клас, 2020-случайни въпроси


НАЦИОНАЛНО ВЪНШНО ОЦЕНЯВАНЕ ПО МАТЕМАТИКА – VII клас

Примерен тест със случайни въпроси, модул 1


7и клас - Математика - Външно оценяване
1. Стойността на израза $12 – (6 + m)$ при $m = –12$ е:







2. Ако $\frac{3^8.9^3}{27^3} = 3^m$, то $m$ е равно на:







3. Нормалният вид на $(x – 0,2)^2$ е многочленът:







4. Посочете невярното равенство:







5. Коренът на уравнението $(5 + x) (5 – x) – 5x (3 – \frac{1}{5}x) = 20$ е:







6. На чертежа $AC = BC$. Мярката на \(\sphericalangle ACB\) е:







7. На чертежа правите $a$, $b$ и $c$ са успоредни. Големината на ъгъл $ x $ е:







8. Числата 1 и 0 са корените на уравнението:





9. В склад доставили 5200 кг ягоди. Първия ден продали 20% от цялото количество, а втория ден – $\frac{3}{4}$ от останалото. Колко кг ягоди са продали през втория ден?







10. На чертежа $S$1 и $S$2 са симетралите съответно на страните $AC$ и $BC$ в триъгълника $ABC$. Ако $AB + KP = 24$ $cm$, дължината на $CO$ е:







11. Многочленът $2(2y − 5) − 4y(2y − 5)$ е тъждествено равен на:





12. Коренът на уравнението $(x − 1)^2 − x(x − 1) = 0$ е:





13. Двама работници трябва да свършат определена работа. Единият може да свърши сам работата за $4$ $h$, а другият - за $12$ $h$. Първоначално единият работи сам $t$ $min$, след което двамата довършват работата. Ако $t$ е не повече от $20$ $min$, за колко възможно най-малко часа двамата работници ще свършат работата?







14. На чертежа $ΔABC$ е равнобедрен ($AC=BC$). Външният ъгъл при върха $C$ е равен на 86° и \(\sphericalangle DAB\)=15° . Мярката на $x$ e:







15. Моторна лодка изминава разстоянието между две пристанища по течението за 3 часа, а срещу течението – за 4 часа. Ако скоростта на течението е 6 км/ч, то разстоянието между пристанищата е:







16. Цената за пътуване с такси се определя по формулата $C = 1,20 + 0,80.k$, където $k$ са изминатите километри, а $C$ е цената в левове. От тази формула изминатите километри $k$ за дадена цена $С$ се определят така:







17. След като похарчил $\frac{4}{5}$ от парите, които имал, на Мони му останали 20 лева. Колко
лева е похарчил Мони?






18. На чертежа $AM$ и $BN$ са ъглополовящи в $ΔABC$.

Кое равенство вярно изразява ъгъл $x$ чрез ъгъл $δ$?







Диагоналите на четириъгълника $ABCD$ ($AB$ \( \neq \) $BC$) се пресичат в точка $O$. Диагоналът $AC$ е ъглополовяща на \(\sphericalangle BAD\) и на \(\sphericalangle BCD\).

 



19. Намерете мярката на \(\sphericalangle AOD\)


20. Намерете и запишете (в кв.см) лицето на четириъгълника ABCD.




21. Намерете и запишете (в см) обиколката на четириъгълника ABCD.




22. Намерете и запишете отсечката, която е равна на отсечката AD.


Диаграмата показва броя на учениците стипендианти за учебната 2018/2019 и 2019/2020 година от едно училище.



23. Какво е отношението на броя на учениците, получили стипендии през 2018/2019 година, към този през 2019/2020 година?







24. Рaзмерът на една месечна стипендия през 2018/2019 г. е бил 105 лева, а през 2019/2020 г. – 135 лева. Всеки от стипендиантите получава стипендия през 10 от дванайсетте месеца на учебната година. Колко лева са необходими, за да се изплатят стипендиите общо за двете учебни години в училището?