Решени тестове
Вход
Учебни помагала
Контакти
Вход с Facebook
4
ти
клас
5
и
клас
6
и
клас
7
и
клас
8
и
клас
9
и
клас
12
и
клас
10
и
клас
Езици
Програмиране
Занимателни тестове
Тест по математика за VII клас, 2020-случайни въпроси
НАЦИОНАЛНО ВЪНШНО ОЦЕНЯВАНЕ ПО МАТЕМАТИКА – VII клас
Примерен тест със
с
лучайни въпроси
, модул 1
7
и
клас - Математика - Външно оценяване
1.
Изразът $x + \frac{1}{4}$ е тъждествено равен на:
$4x+1$
$x+1,4$
$x+4$
$x+0,25$
2.
Ако $\frac{3^8.9^3}{27^3} = 3^m$, то $m$ е равно на:
3
5
2
4
3.
Турист изкачва един връх за 6 чàса със скорост $x$ km/h и се връща обратно за 3 пъти по-малко време, като се движи с 4 km/h по-бързо. Уравнението, което изразява тази зависимост, е:
$6x=2(x+4)$
$6x=3(x-4)$
$6x=3(x+4)$
$6x=2(x-4)$
4.
Кое от неравенствата НЯМА решение?
$0t < 1 − t$
$t ≤ 3t − 2t$
$t − t < −1$
$t − 2t < t$
5.
Уравнението $−x^2 = (4 − x)x$ е еквивалентно на:
$4x = 1$
$−5x = 0$
$0x = 4$
$x = x$
6.
На чертежа $AC = BC$. Мярката на \(\sphericalangle ACB\) е:
80°
50°
75°
25°
7.
Мярката на \(\sphericalangle BCM\) от чертежа е:
140°
80°
100°
110°
8.
Числата 1 и 0 са корените на уравнението:
$|2x−1|=−1$
$|2x−1|=1$
$−|2x−1|=1$
$|2x−1|=0$
9.
Намалих 6 пъти естественото число $n$ и получих число, по-голямо от 1,8. Най-малкото число $n$, за което това е вярно, е:
11
1
10
12
10.
Даден е равностранен триъгълник $ABC$. На лъча $BA$
→
е построена отсечката $AM = AC$ (точката $A$ е между точките $M$ и $B$) и на лъча $AB$
→
е построена отсечката $BN = BC$ (точката $B$ е между точките $N$ и $A$). Тогава \(\sphericalangle MCN\) е равен на:
150°
120°
180°
135°
11.
Изразът $mx-2x-2y+my$ е тъждествено равен на израза:
$(x+y)(m-2)$
$(x-y)(m+2)$
$(x+y)(m+2)$
$(x-y)(m-2)$
12.
Посочете едно цяло число и едно дробно число, които са решения на неравенството $9 ≤ –3x$.
–2, –2.5
2, 2.5
–27, –2.2
–3, –4.3
13.
Камион и лека кола тръгват едновременно един срещу друг от два пункта, които са на разстояние $400$ $km$ един от друг. Ако превозните средства се движат с постоянна скорост, съответно $60$ $km/h$ и $90$ $km/h$ , те ще се срещнат след:
$2$ $h$ $40$ $min$
$2$ $h$
$2$ $h$ $36$ $min$
$2$ $h$ $20$ $min$
14.
На чертежа точката $D$ от отсечката $AC$ е избрана така, че $AD = DB = BC$. Мярката на \(\sphericalangle ABC\) e:
51°
43°
8°
86°
15.
В трамвай могат да пътуват не повече от 70 души. Половината от пътниците, качили се в трамвая на първата спирка, заели някои от седящите места. След първата спирка броят на пътниците се увеличил с 8%. Колко пътници са се качили на първата спирка?
54
49
50
42
16.
Цената за пътуване с такси се определя по формулата $C = 1,20 + 0,80.k$, където $k$ са изминатите километри, а $C$ е цената в левове. От тази формула изминатите километри $k$ за дадена цена $С$ се определят така:
$k = (C + 1,20).0,80$
$k = C:2,00$
$k = 0,80.C – 1,20$
$k = (C – 1,20):0,80$
17.
Бабата на Камен го поканила за обяд в 12 часá. След като избрал маршрута, той преценил, че ако тръгне в 10 часá и 30 минути с ролери, ще закъснее с 15 минути. Затова Камен тръгнал в 10 часá и 30 минути с велосипед по същия маршрут и пристигнал с 20 минути по-рано от уречения час. Скоростта на Камен с ролери е със 7 кm/h по-малка, отколкото скоростта му с велосипед. Колко километра е маршрутът от дома на Камен до дома на баба му?
24,5 km
25 km
25,5 km
24 km
18.
Обемът на дадения на чертежа прав кръгов конус е:
$12 \pi \space см^3$
$4 \pi \space см^3$
$36 \pi \space см^3$
$15 \pi \space см^3$
За равнобедрения $ΔABC$ е дадено, че \(\sphericalangle ACB\) = 120° и $AL$ е ъглополовяща на \(\sphericalangle BAC\). На страната $AB$ е взета точка $M$ така, че $AM = AC$.
19.
Намерете големината на \(\sphericalangle ALM\) в градуси.
45°
55°
60°
35°
20.
Ако $CL = m$ и $BL = n$, намерете периметърът на $ΔMBL$.
$3m + n$
$2m + n$
$2n + m$
$m + 3n$
Спортните екипи на учениците в едно училище са четири вида, както са показани на диаграмата.
21.
Каква част от учениците
имат
в екипа си жълт цвят?
$\frac {1}{4}$
$\frac {2}{3}$
$\frac {1}{2}$
$\frac {1}{3}$
22.
Каква част от учениците
нямат
в екипа си червен цвят?
$\frac {5}{6}$
$\frac {7}{12}$
$\frac {1}{3}$
$\frac {2}{3}$
23.
Какъв е процентът на учениците, които имат син цвят в екипа си?
35%
20%
25%
23%
24.
Колко градуса е ъгълът на сектора на учениците с червено-сините екипи?
57°
60°
55°
45°