Решени тестове
Вход
Учебни помагала
Контакти
Вход с Facebook
4
ти
клас
5
и
клас
6
и
клас
7
и
клас
8
и
клас
9
и
клас
12
и
клас
10
и
клас
Езици
Програмиране
Занимателни тестове
Тест по математика за VII клас, 2020-случайни въпроси
НАЦИОНАЛНО ВЪНШНО ОЦЕНЯВАНЕ ПО МАТЕМАТИКА – VII клас
Примерен тест със
с
лучайни въпроси
, модул 1
7
и
клас - Математика - Външно оценяване
1.
Стойността на израза $12 – (6 + m)$ при $m = –12$ е:
18
6
–6
–18
2.
Изразът $(1 − 2x)^2$ е тъждествено равен на:
$1 + 4x^2$
$1 − 4x + 4x^2$
$1 − 4x − 4x^2$
$1 − 4x^2$
3.
Нормалният вид на $(x – 0,2)^2$ е многочленът:
$x^2 – 0,4$
$x^2 + 0,04$
$x^2 – 0,4x + 0,4$
$x^2 – 0,4x + 0,04$
4.
Коренът на уравнението $3(4 – x) = –4$ е:
$\frac{16}{3}$
$16$
$–\frac{4}{9}$
$8$
5.
Коренът на уравнението $2 – 2x = \frac{1}{2}$ е:
$1\frac{1}{4}$
$0$
$1\frac{1}{2}$
$\frac{3}{4}$
6.
На чертежа $AC = BC$. Мярката на \(\sphericalangle ACB\) е:
80°
50°
75°
25°
7.
На чертежа правите $a$ и $b$ са успоредни. Ъгъл $α$ е равен на:
75°
85°
115°
105°
8.
Числата 1 и 0 са корените на уравнението:
$−|2x−1|=1$
$|2x−1|=−1$
$|2x−1|=0$
$|2x−1|=1$
9.
Мария почиства сама жилището си за 6 чàса, а нейната майка почиства същото жилище за 4 чàса. За колко чàса ще почистят жилището, ако работят заедно?
1 час и 44 минути
2 чàса и 24 минути
2,04 чàса
2 чàса
10.
На чертежа $S$
1
и $S$
2
са симетралите съответно на страните $AC$ и $BC$ в триъгълника $ABC$. Ако $AB + KP = 24$ $cm$, дължината на $CO$ е:
$6$ $cm$
$4$ $cm$
$8$ $cm$
$12$ $cm$
11.
Изразът $(a – 1)^3 – (a – 1)(a^2 + a + 1)$ е тъждествено равен на:
$3a^2 + 3a$
$–2$
$0$
$–3a^2 + 3a$
12.
По-големият корен на уравнението $(x + 2)^3 – (3x + 2) (x + 4) = x (-x – 1)^2$ е:
–3
7
0
3
13.
Басейн се пълни от два крана. Единият може да го напълни за 20 минути, а другият – за 30 минути. За колко минути ще се напълни басейнът, ако се отворят и двата крана едновременно?
15
50
24
12
14.
В $ΔABC$ $AL$ е ъглополовяща. Големината на \(\sphericalangle ALB\) е:
85°
75°
95°
70°
15.
Даден е правоъгълник с дължини на страните две последователни нечетни числа. Ако намалим по-малката му страна с $4$ $cm$, а другата запазим, ще получим правоъгълник, лицето на който е с $36$ $cm^2$ по-малко от лицето на дадения правоъгълник. Лицето на дадения правоъгълник е:
$80$ $cm^2$
$63$ $cm^2$
$99$ $cm^2$
$43$ $cm^2$
16.
Две от страните на триъгълник са с дължини 5 cm и 7 cm, а третата има дължина, която се изразява с естествено число сантиметри. Броят на триъгълниците, които отговарят на това условие, е:
10
9
7
8
17.
След като похарчил $\frac{4}{5}$ от парите, които имал, на Мони му останали 20 лева. Колко
лева е похарчил Мони?
100
25
80
16
18.
На чертежа $CD$ е височина на правоъгълния $ΔABC$ към хипотенузата му $AB$. Точката M е среда на страната $AC$, а точката $N$ е среда на страната $BC$. Ако $AC = 6$ $cm$ и $BC = $8$ $cm$, лицето на $ΔDN$M е:
6
cm
²
12
cm
²
7
cm
²
14
cm
²
В $ΔABC$ отсечката $CH$ е височина и точка $Н$ е вътрешна за отсечката $АВ$. Точката $M$ е средата на $BC$ и $AH = CH = HM$. Точката $N$ е от отсечката $HB$ и е такава, че $HN = MN = NB$.
Даденият чертеж е само за илюстрация – не е начертан в мащаб и не е предназначен за директно измерване на дължини на отсечки и мерки на ъгли.
19.
Намерете мярката на \(\sphericalangle CAB\).
45°
40°
50°
30°
20.
Намерете мярката на \(\sphericalangle ABC\).
25°
30°
45°
40°
21.
Намерете отношението $HN : BN$.
2:1
3:2
2:3
1:3
22.
Намерете отношението на лицата $S$
ΔNMH
: $S$
ΔCMH
.
3:2
2:3
3:1
1:3
Диаграмата показва броя на учениците стипендианти за учебната 2018/2019 и 2019/2020 година от едно училище.
23.
Какво е отношението на броя на учениците, получили стипендии през 2018/2019 година, към този през 2019/2020 година?
\( \frac 4 5 \)
\( \frac {31} {41}\)
\( \frac 5 7 \)
\( \frac 3 4\)
24.
Рaзмерът на една месечна стипендия през 2018/2019 г. е бил 105 лева, а през 2019/2020 г. – 135 лева. Всеки от стипендиантите получава стипендия през 10 от дванайсетте месеца на учебната година. Колко лева са необходими, за да се изплатят стипендиите общо за двете учебни години в училището?