Решени тестове
Вход
Учебни помагала
Контакти
Вход с Facebook
4
ти
клас
5
и
клас
6
и
клас
7
и
клас
8
и
клас
9
и
клас
12
и
клас
10
и
клас
Езици
Програмиране
Занимателни тестове
Тест по математика за VII клас, 2020-случайни въпроси
НАЦИОНАЛНО ВЪНШНО ОЦЕНЯВАНЕ ПО МАТЕМАТИКА – VII клас
Примерен тест със
с
лучайни въпроси
, модул 1
7
и
клас - Математика - Външно оценяване
1.
Стойността на израза $12 – (2,5 – b)$ при $b = –2,5$ е:
12
17
8
7
2.
Разликата 25.25 – 5.5 е равна на произведението:
20.20
25.20.5
25.25.25
20.30
3.
Нормалният вид на $(x – 0,2)^2$ е многочленът:
$x^2 + 0,04$
$x^2 – 0,4x + 0,04$
$x^2 – 0,4x + 0,4$
$x^2 – 0,4$
4.
При $а = –2$ изразът $5–3(a–b)$ e тъждествено равен на:
$b+11$
$3b+11$
$11–3b$
$2+3b$
5.
Коренът на уравнението $2 – 2x = \frac{1}{2}$ е:
$\frac{3}{4}$
$1\frac{1}{2}$
$1\frac{1}{4}$
$0$
6.
На чертежа $△ABC$ е разностранен. Ако $AO = OB$, то точка $O$ лежи на:
симетралата на страната $AB$
ъглополовящата на \(\sphericalangle ACB\)
медианата през $C$ към $AB$
височината през $C$ към $AB$
7.
На чертежа правите $a$, $b$ и $c$ са успоредни. Големината на ъгъл $ x $ е:
42°
32°
30°
18°
8.
Числата 1 и 0 са корените на уравнението:
$|2x−1|=0$
$|2x−1|=1$
$|2x−1|=−1$
$−|2x−1|=1$
9.
Мария почиства сама жилището си за 6 чàса, а нейната майка почиства същото жилище за 4 чàса. За колко чàса ще почистят жилището, ако работят заедно?
1 час и 44 минути
2 чàса
2,04 чàса
2 чàса и 24 минути
10.
На чертежа $S$
1
и $S$
2
са симетралите съответно на страните $AC$ и $BC$ в триъгълника $ABC$. Ако $AB + KP = 24$ $cm$, дължината на $CO$ е:
$8$ $cm$
$4$ $cm$
$6$ $cm$
$12$ $cm$
11.
Изразът $(a – 1)^3 – (a – 1)(a^2 + a + 1)$ е тъждествено равен на:
$–3a^2 + 3a$
$3a^2 + 3a$
$0$
$–2$
12.
Решенията на неравенството ${2x-3 \over 3}>{2x+3 \over 2}$ са:
${x<-7,5}$
${x>-7,5}$
${x<-17}$
${x>3}$
13.
Басейн се пълни от два крана. Единият може да го напълни за 20 минути, а другият – за 30 минути. За колко минути ще се напълни басейнът, ако се отворят и двата крана едновременно?
24
15
12
50
14.
На чертежа точката $D$ от отсечката $AC$ е избрана така, че $AD = DB = BC$. Мярката на \(\sphericalangle ABC\) e:
43°
86°
51°
8°
15.
Моторна лодка изминава разстоянието между две пристанища по течението за 3 часа, а срещу течението – за 4 часа. Ако скоростта на течението е 6 км/ч, то разстоянието между пристанищата е:
168 км
42 км
144 км
126 км
16.
Ако едно естествено число умножим с 4 и от полученото произведение извадим 7,
ще се получи число, по-малко от 13. Сборът на всички естествени числа с това
свойство е:
12
10
15
11
17.
След като похарчил $\frac{4}{5}$ от парите, които имал, на Мони му останали 20 лева. Колко
лева е похарчил Мони?
25
100
16
80
18.
На чертежа $CD$ е височина на правоъгълния $ΔABC$ към хипотенузата му $AB$. Точката M е среда на страната $AC$, а точката $N$ е среда на страната $BC$. Ако $AC = 6$ $cm$ и $BC = $8$ $cm$, лицето на $ΔDN$M е:
12
cm
²
6
cm
²
7
cm
²
14
cm
²
В $ΔABC$ отсечката $CH$ е височина и точка $Н$ е вътрешна за отсечката $АВ$. Точката $M$ е средата на $BC$ и $AH = CH = HM$. Точката $N$ е от отсечката $HB$ и е такава, че $HN = MN = NB$.
Даденият чертеж е само за илюстрация – не е начертан в мащаб и не е предназначен за директно измерване на дължини на отсечки и мерки на ъгли.
19.
Намерете мярката на \(\sphericalangle CAB\).
30°
50°
45°
40°
20.
Намерете мярката на \(\sphericalangle ABC\).
45°
30°
40°
25°
21.
Намерете отношението $HN : BN$.
3:2
2:3
1:3
2:1
22.
Намерете отношението на лицата $S$
ΔNMH
: $S$
ΔCMH
.
1:3
2:3
3:1
3:2
Спортните екипи на учениците в едно училище са четири вида, както са показани на диаграмата.
23.
Каква част от учениците
имат
в екипа си жълт цвят?
$\frac {1}{2}$
$\frac {1}{3}$
$\frac {2}{3}$
$\frac {1}{4}$
24.
Каква част от учениците
нямат
в екипа си червен цвят?
$\frac {5}{6}$
$\frac {1}{3}$
$\frac {7}{12}$
$\frac {2}{3}$
25.
Какъв е процентът на учениците, които имат син цвят в екипа си?
35%
23%
20%
25%
26.
Колко градуса е ъгълът на сектора на учениците с червено-сините екипи?
60°
57°
55°
45°