Решени тестове
Вход
Учебни помагала
Контакти
Вход с Facebook
4
ти
клас
5
и
клас
6
и
клас
7
и
клас
8
и
клас
9
и
клас
12
и
клас
10
и
клас
Езици
Програмиране
Занимателни тестове
Тест по математика за VII клас, 2020-случайни въпроси
НАЦИОНАЛНО ВЪНШНО ОЦЕНЯВАНЕ ПО МАТЕМАТИКА – VII клас
Примерен тест със
с
лучайни въпроси
, модул 1
7
и
клас - Математика - Външно оценяване
1.
Стойността на израза $12 – (2,5 – b)$ при $b = –2,5$ е:
12
8
17
7
2.
Разликата 25.25 – 5.5 е равна на произведението:
20.20
20.30
25.20.5
25.25.25
3.
Нормалният вид на $(x – 0,2)^2$ е многочленът:
$x^2 – 0,4x + 0,4$
$x^2 – 0,4$
$x^2 – 0,4x + 0,04$
$x^2 + 0,04$
4.
Посочете невярното равенство:
$64 – 16a + a^2 = (8 – a)^2$
$x^3 + 6x^2 + (2x + 8) = (x + 2)^3$
$\frac{a^2}{9} – \frac{2ab}{3} + b^2 = (\frac{a}{3} + b)^2$
$x^2 – 6x + 9 = (x – 3)^2$
5.
Коренът на уравнението $2 – 2x = \frac{1}{2}$ е:
$1\frac{1}{4}$
$\frac{3}{4}$
$0$
$1\frac{1}{2}$
6.
На чертежа $△ABC$ е разностранен. Ако $AO = OB$, то точка $O$ лежи на:
ъглополовящата на \(\sphericalangle ACB\)
симетралата на страната $AB$
височината през $C$ към $AB$
медианата през $C$ към $AB$
7.
На чертежа $OL$
→
е ъглополовяща на \(\sphericalangle AOC\). Ако мярката на \(\sphericalangle AOC\) е с 40% по-голяма от мярката на \(\sphericalangle BOC\), то мярката на \(\sphericalangle BOL\) е:
127° 30'
52° 30'
75°
105°
8.
Числата 0 и 2 са корените на уравнението:
$−|x−1|=−1$
$|x−2|=0$
$|x+1|=1$
$|x−1|=−1$
9.
Мария почиства сама жилището си за 6 чàса, а нейната майка почиства същото жилище за 4 чàса. За колко чàса ще почистят жилището, ако работят заедно?
2,04 чàса
1 час и 44 минути
2 чàса и 24 минути
2 чàса
10.
На чертежа $S$
1
и $S$
2
са симетралите съответно на страните $AC$ и $BC$ в триъгълника $ABC$. Ако $AB + KP = 24$ $cm$, дължината на $CO$ е:
$8$ $cm$
$4$ $cm$
$12$ $cm$
$6$ $cm$
11.
Изразът $mx-2x-2y+my$ е тъждествено равен на израза:
$(x+y)(m-2)$
$(x-y)(m-2)$
$(x+y)(m+2)$
$(x-y)(m+2)$
12.
По-големият корен на уравнението $(x + 2)^3 – (3x + 2) (x + 4) = x (-x – 1)^2$ е:
–3
7
3
0
13.
Камион и лека кола тръгват едновременно един срещу друг от два пункта, които са на разстояние $400$ $km$ един от друг. Ако превозните средства се движат с постоянна скорост, съответно $60$ $km/h$ и $90$ $km/h$ , те ще се срещнат след:
$2$ $h$ $36$ $min$
$2$ $h$ $20$ $min$
$2$ $h$ $40$ $min$
$2$ $h$
14.
На чертежа $ΔABC$ е правоъгълен, $CM$ е медиана към хипотенузата $AB$, $CH$ е височина към хипотенузата, $CM = BC$ и $CH = 3$ $cm$. Дължината на страната $AC$ е:
3 cm
5 cm
6 cm
4 cm
15.
В трамвай могат да пътуват не повече от 70 души. Половината от пътниците, качили се в трамвая на първата спирка, заели някои от седящите места. След първата спирка броят на пътниците се увеличил с 8%. Колко пътници са се качили на първата спирка?
50
49
54
42
16.
Ученици от едно училище купили 40 билета за театър за 488 лева. Един билет на партера струва 14 лева, а един билет на балкона струва 10 лева. По колко билета са купили от двата вида?
22 и 18
25 и 15
24 и 16
23 и 17
17.
От София до Бургас разстоянието по определен маршрут е 390 km. От двата града един срещу друг тръгнали две превозни средства, като едното превозно средство се движело със скорост, която е с 10 km/h по-голяма от скоростта на другото превозно средство. След 3 часа пътуване двете превозни средства се намирали на разстояние 24 km един от друг? Каква е възможно най-голямата скорост, с която се е движело по-бавното превозно средство?
60 km/h
65 km/h
54 km/h
64 km/h
18.
Ъглополовящите $AM$ и $BN$ в успоредника $ABCD$ разделят страната $DC$ на три равни части. Дължината на страната $BC$ е $a$ cm. Периметърът на успоредника $ABCD$ в сантиметри е равен на:
$16a$
$8a$
$10a$
$6a$
За равнобедрения $ΔABC$ е дадено, че \(\sphericalangle ACB\) = 120° и $AL$ е ъглополовяща на \(\sphericalangle BAC\). На страната $AB$ е взета точка $M$ така, че $AM = AC$.
19.
Намерете големината на \(\sphericalangle ALM\) в градуси.
55°
35°
60°
45°
20.
Ако $CL = m$ и $BL = n$, намерете периметърът на $ΔMBL$.
$2m + n$
$m + 3n$
$2n + m$
$3m + n$
Диаграмата показва броя на учениците стипендианти за учебната 2018/2019 и 2019/2020 година от едно училище.
21.
Какво е отношението на броя на учениците, получили стипендии през 2018/2019 година, към този през 2019/2020 година?
\( \frac 3 4\)
\( \frac 4 5 \)
\( \frac {31} {41}\)
\( \frac 5 7 \)
22.
Рaзмерът на една месечна стипендия през 2018/2019 г. е бил 105 лева, а през 2019/2020 г. – 135 лева. Всеки от стипендиантите получава стипендия през 10 от дванайсетте месеца на учебната година. Колко лева са необходими, за да се изплатят стипендиите общо за двете учебни години в училището?