Тест по математика за VII клас, 2020-случайни въпроси


НАЦИОНАЛНО ВЪНШНО ОЦЕНЯВАНЕ ПО МАТЕМАТИКА – VII клас

Примерен тест със случайни въпроси, модул 1


7и клас - Математика - Външно оценяване
1. Ако $b=\frac{1}{6}$, то $(b–1)–3(1–b)+4(2b–1)$ е равно на:







2. Разликата 25.25 – 5.5 е равна на произведението:







3. Турист изкачва един връх за 6 чàса със скорост $x$ km/h и се връща обратно за 3 пъти по-малко време, като се движи с 4 km/h по-бързо. Уравнението, което изразява тази зависимост, е:







4. Кое от неравенствата НЯМА решение?







5. Коренът на уравнението $2 – 2x = \frac{1}{2}$ е:







6. На чертежа $AC = BC$. Мярката на \(\sphericalangle ACB\) е:







7. На чертежа $OL$ е ъглополовяща на \(\sphericalangle AOC\). Ако мярката на \(\sphericalangle AOC\) е с 40% по-голяма от мярката на \(\sphericalangle BOC\), то мярката на \(\sphericalangle BOL\) е:







8. Кой израз е тъждествено равен на многочлена, отговарящ на следното описание:
Към втората степен на $4y$ е прибавено произведението на $y$ и $4$.







9. В склад доставили 5200 кг ягоди. Първия ден продали 20% от цялото количество, а втория ден – $\frac{3}{4}$ от останалото. Колко кг ягоди са продали през втория ден?







10. На чертежа $S$1 и $S$2 са симетралите съответно на страните $AC$ и $BC$ в триъгълника $ABC$. Ако $AB + KP = 24$ $cm$, дължината на $CO$ е:







11. Изразът $a^2 + 2a – 3$ е тъждествено равен на:







12. По-големият корен на уравнението $(x + 2)^3 – (3x + 2) (x + 4) = x (-x – 1)^2$ е:







13. Камион и лека кола тръгват едновременно един срещу друг от два пункта, които са на разстояние $400$ $km$ един от друг. Ако превозните средства се движат с постоянна скорост, съответно $60$ $km/h$ и $90$ $km/h$ , те ще се срещнат след:







14. На чертежа $ΔABC$ е правоъгълен, $CM$ е медиана към хипотенузата $AB$, $CH$ е височина към хипотенузата, $CM = BC$ и $CH = 3$ $cm$. Дължината на страната $AC$ е:







15. Моторна лодка изминава разстоянието между две пристанища по течението за 3 часа, а срещу течението – за 4 часа. Ако скоростта на течението е 6 км/ч, то разстоянието между пристанищата е:







16. Ако едно естествено число умножим с 4 и от полученото произведение извадим 7,
ще се получи число, по-малко от 13. Сборът на всички естествени числа с това
свойство е:






17. От София до Бургас разстоянието по определен маршрут е 390 km. От двата града един срещу друг тръгнали две превозни средства, като едното превозно средство се движело със скорост, която е с 10 km/h по-голяма от скоростта на другото превозно средство. След 3 часа пътуване двете превозни средства се намирали на разстояние 24 km един от друг? Каква е възможно най-голямата скорост, с която се е движело по-бавното превозно средство?







18. На чертежа $CD$ е височина на правоъгълния $ΔABC$ към хипотенузата му $AB$. Точката M е среда на страната $AC$, а точката $N$ е среда на страната $BC$. Ако $AC = 6$ $cm$ и $BC = $8$ $cm$, лицето на $ΔDN$M е:








В $ΔABC$ отсечката $CH$ е височина и точка $Н$ е вътрешна за отсечката $АВ$. Точката $M$ е средата на $BC$ и $AH = CH = HM$. Точката $N$ е от отсечката $HB$ и е такава, че $HN = MN = NB$.


Даденият чертеж е само за илюстрация – не е начертан в мащаб и не е предназначен за директно измерване на дължини на отсечки и мерки на ъгли.



19. Намерете мярката на \(\sphericalangle CAB\).





20. Намерете мярката на \(\sphericalangle ABC\).







21. Намерете отношението $HN : BN$.





22. Намерете отношението на лицата $S$ΔNMH : $S$ΔCMH.







Спортните екипи на учениците в едно училище са четири вида, както са показани на диаграмата.



23. Каква част от учениците имат в екипа си жълт цвят?







24. Каква част от учениците нямат в екипа си червен цвят?







25. Какъв е процентът на учениците, които имат син цвят в екипа си?







26. Колко градуса е ъгълът на сектора на учениците с червено-сините екипи?