Решени тестове
Вход
Учебни помагала
Контакти
Вход с Facebook
4
ти
клас
5
и
клас
6
и
клас
7
и
клас
8
и
клас
9
и
клас
12
и
клас
10
и
клас
Езици
Програмиране
Занимателни тестове
Тест по математика за VII клас, 2020-случайни въпроси
НАЦИОНАЛНО ВЪНШНО ОЦЕНЯВАНЕ ПО МАТЕМАТИКА – VII клас
Примерен тест със
с
лучайни въпроси
, модул 1
7
и
клас - Математика - Външно оценяване
1.
Изразът $x + \frac{1}{4}$ е тъждествено равен на:
$x+1,4$
$4x+1$
$x+0,25$
$x+4$
2.
Кое числово равенство е вярно?
$\frac{1}{3} + \frac{1}{5} = \frac{5+3}{3.5}$
$\frac{1}{3} + \frac{1}{5} = \frac{1+1}{3.5}$
$\frac{1}{3} + \frac{1}{5} = \frac{1}{3+5}$
$\frac{1}{3} + \frac{1}{5} = \frac{1+1}{3+5}$
3.
При $a=–1$ най-малка стойност има изразът:
$a^2$
$a^2–2$
$a^3$
$a^3–1$
4.
Посочете невярното равенство:
$x^2 – 6x + 9 = (x – 3)^2$
$\frac{a^2}{9} – \frac{2ab}{3} + b^2 = (\frac{a}{3} + b)^2$
$x^3 + 6x^2 + (2x + 8) = (x + 2)^3$
$64 – 16a + a^2 = (8 – a)^2$
5.
Коренът на уравнението $2 – 2x = \frac{1}{2}$ е:
$1\frac{1}{4}$
$0$
$\frac{3}{4}$
$1\frac{1}{2}$
6.
По данните от чертежа ъглите $x$ и $y$ са в отношение:
4:1
3:1
7:2
5:1
7.
Мярката на \(\sphericalangle BCM\) от чертежа е:
110°
80°
140°
100°
8.
Числата 1 и 0 са корените на уравнението:
$−|2x−1|=1$
$|2x−1|=0$
$|2x−1|=−1$
$|2x−1|=1$
9.
Колко грама захар има в 500 грама 5% захарен разтвор?
100
250
5
25
10.
Мярката на \(\sphericalangle BAC\) от чертежа е:
40°
80°
10°
50°
11.
Изразът $mx-2x-2y+my$ е тъждествено равен на израза:
$(x-y)(m+2)$
$(x+y)(m-2)$
$(x+y)(m+2)$
$(x-y)(m-2)$
12.
Решенията на неравенството ${2x-3 \over 3}>{2x+3 \over 2}$ са:
${x<-7,5}$
${x<-17}$
${x>-7,5}$
${x>3}$
13.
Камион и лека кола тръгват едновременно един срещу друг от два пункта, които са на разстояние $400$ $km$ един от друг. Ако превозните средства се движат с постоянна скорост, съответно $60$ $km/h$ и $90$ $km/h$ , те ще се срещнат след:
$2$ $h$ $20$ $min$
$2$ $h$ $40$ $min$
$2$ $h$ $36$ $min$
$2$ $h$
14.
На чертежа точката $D$ от отсечката $AC$ е избрана така, че $AD = DB = BC$. Мярката на \(\sphericalangle ABC\) e:
51°
8°
43°
86°
15.
Даден е правоъгълник с дължини на страните две последователни нечетни числа. Ако намалим по-малката му страна с $4$ $cm$, а другата запазим, ще получим правоъгълник, лицето на който е с $36$ $cm^2$ по-малко от лицето на дадения правоъгълник. Лицето на дадения правоъгълник е:
$80$ $cm^2$
$63$ $cm^2$
$99$ $cm^2$
$43$ $cm^2$
16.
Ако едно естествено число умножим с 4 и от полученото произведение извадим 7,
ще се получи число, по-малко от 13. Сборът на всички естествени числа с това
свойство е:
11
15
10
12
17.
Бабата на Камен го поканила за обяд в 12 часá. След като избрал маршрута, той преценил, че ако тръгне в 10 часá и 30 минути с ролери, ще закъснее с 15 минути. Затова Камен тръгнал в 10 часá и 30 минути с велосипед по същия маршрут и пристигнал с 20 минути по-рано от уречения час. Скоростта на Камен с ролери е със 7 кm/h по-малка, отколкото скоростта му с велосипед. Колко километра е маршрутът от дома на Камен до дома на баба му?
24,5 km
24 km
25 km
25,5 km
18.
Ъглополовящите $AM$ и $BN$ в успоредника $ABCD$ разделят страната $DC$ на три равни части. Дължината на страната $BC$ е $a$ cm. Периметърът на успоредника $ABCD$ в сантиметри е равен на:
$6a$
$16a$
$10a$
$8a$
В $ΔABC$ отсечката $CH$ е височина и точка $Н$ е вътрешна за отсечката $АВ$. Точката $M$ е средата на $BC$ и $AH = CH = HM$. Точката $N$ е от отсечката $HB$ и е такава, че $HN = MN = NB$.
Даденият чертеж е само за илюстрация – не е начертан в мащаб и не е предназначен за директно измерване на дължини на отсечки и мерки на ъгли.
19.
Намерете мярката на \(\sphericalangle CAB\).
40°
45°
50°
30°
20.
Намерете мярката на \(\sphericalangle ABC\).
45°
40°
25°
30°
21.
Намерете отношението $HN : BN$.
1:3
2:3
2:1
3:2
22.
Намерете отношението на лицата $S$
ΔNMH
: $S$
ΔCMH
.
2:3
1:3
3:1
3:2
Диаграмата показва броя на учениците стипендианти за учебната 2018/2019 и 2019/2020 година от едно училище.
23.
Какво е отношението на броя на учениците, получили стипендии през 2018/2019 година, към този през 2019/2020 година?
\( \frac 5 7 \)
\( \frac {31} {41}\)
\( \frac 3 4\)
\( \frac 4 5 \)
24.
Рaзмерът на една месечна стипендия през 2018/2019 г. е бил 105 лева, а през 2019/2020 г. – 135 лева. Всеки от стипендиантите получава стипендия през 10 от дванайсетте месеца на учебната година. Колко лева са необходими, за да се изплатят стипендиите общо за двете учебни години в училището?