Решени тестове
Вход
Учебни помагала
Контакти
Вход с Facebook
4
ти
клас
5
и
клас
6
и
клас
7
и
клас
8
и
клас
9
и
клас
12
и
клас
10
и
клас
Езици
Програмиране
Занимателни тестове
Тест по математика за VII клас, 2020-случайни въпроси
НАЦИОНАЛНО ВЪНШНО ОЦЕНЯВАНЕ ПО МАТЕМАТИКА – VII клас
Примерен тест със
с
лучайни въпроси
, модул 1
7
и
клас - Математика - Външно оценяване
1.
Стойността на израза $12 – (2,5 – b)$ при $b = –2,5$ е:
8
17
12
7
2.
Кое числово равенство е вярно?
$\frac{1}{3} + \frac{1}{5} = \frac{1+1}{3.5}$
$\frac{1}{3} + \frac{1}{5} = \frac{1}{3+5}$
$\frac{1}{3} + \frac{1}{5} = \frac{5+3}{3.5}$
$\frac{1}{3} + \frac{1}{5} = \frac{1+1}{3+5}$
3.
При $a=–1$ най-малка стойност има изразът:
$a^3–1$
$a^2$
$a^3$
$a^2–2$
4.
Кое от неравенствата НЯМА решение?
$t − 2t < t$
$0t < 1 − t$
$t − t < −1$
$t ≤ 3t − 2t$
5.
Равенството$(3x–2)^2=(*)–12x+4$ е тъждество, ако (*) се замени с едночлена:
$3x$
$9x^2$
$3x^2$
$9x$
6.
На чертежа $AC = BC$. Мярката на \(\sphericalangle ACB\) е:
25°
50°
75°
80°
7.
На чертежа правите $a$ и $b$ са успоредни. Ъгъл $α$ е равен на:
75°
115°
85°
105°
8.
Корените на уравнението $2 |1 – x| – 5 = –1$ са:
1 и –3
–1 и –3
–1 и 3
1 и 3
9.
Мария почиства сама жилището си за 6 чàса, а нейната майка почиства същото жилище за 4 чàса. За колко чàса ще почистят жилището, ако работят заедно?
2,04 чàса
1 час и 44 минути
2 чàса и 24 минути
2 чàса
10.
На чертежа $S$
1
и $S$
2
са симетралите съответно на страните $AC$ и $BC$ в триъгълника $ABC$. Ако $AB + KP = 24$ $cm$, дължината на $CO$ е:
$12$ $cm$
$4$ $cm$
$8$ $cm$
$6$ $cm$
11.
Многочленът $2(2y − 5) − 4y(2y − 5)$ е тъждествено равен на:
$−2y(2y − 5)$
$4(2y − 5)(1 − y)$
$2(2y − 5)(1 − 2y)$
$2(2y − 5)(1 + 2y)$
12.
Посочете едно цяло число и едно дробно число, които са решения на неравенството $9 ≤ –3x$.
–27, –2.2
2, 2.5
–3, –4.3
–2, –2.5
13.
Камион и лека кола тръгват едновременно един срещу друг от два пункта, които са на разстояние $400$ $km$ един от друг. Ако превозните средства се движат с постоянна скорост, съответно $60$ $km/h$ и $90$ $km/h$ , те ще се срещнат след:
$2$ $h$ $40$ $min$
$2$ $h$ $36$ $min$
$2$ $h$ $20$ $min$
$2$ $h$
14.
В $ΔABC$ $AL$ е ъглополовяща. Големината на \(\sphericalangle ALB\) е:
85°
95°
70°
75°
15.
Даден е правоъгълник с дължини на страните две последователни нечетни числа. Ако намалим по-малката му страна с $4$ $cm$, а другата запазим, ще получим правоъгълник, лицето на който е с $36$ $cm^2$ по-малко от лицето на дадения правоъгълник. Лицето на дадения правоъгълник е:
$80$ $cm^2$
$43$ $cm^2$
$63$ $cm^2$
$99$ $cm^2$
16.
Цената за пътуване с такси се определя по формулата $C = 1,20 + 0,80.k$, където $k$ са изминатите километри, а $C$ е цената в левове. От тази формула изминатите километри $k$ за дадена цена $С$ се определят така:
$k = C:2,00$
$k = (C + 1,20).0,80$
$k = (C – 1,20):0,80$
$k = 0,80.C – 1,20$
17.
Бабата на Камен го поканила за обяд в 12 часá. След като избрал маршрута, той преценил, че ако тръгне в 10 часá и 30 минути с ролери, ще закъснее с 15 минути. Затова Камен тръгнал в 10 часá и 30 минути с велосипед по същия маршрут и пристигнал с 20 минути по-рано от уречения час. Скоростта на Камен с ролери е със 7 кm/h по-малка, отколкото скоростта му с велосипед. Колко километра е маршрутът от дома на Камен до дома на баба му?
25 km
24,5 km
24 km
25,5 km
18.
Обемът на дадения на чертежа прав кръгов конус е:
$15 \pi \space см^3$
$36 \pi \space см^3$
$12 \pi \space см^3$
$4 \pi \space см^3$
В $ΔABC$ отсечката $CH$ е височина и точка $Н$ е вътрешна за отсечката $АВ$. Точката $M$ е средата на $BC$ и $AH = CH = HM$. Точката $N$ е от отсечката $HB$ и е такава, че $HN = MN = NB$.
Даденият чертеж е само за илюстрация – не е начертан в мащаб и не е предназначен за директно измерване на дължини на отсечки и мерки на ъгли.
19.
Намерете мярката на \(\sphericalangle CAB\).
50°
45°
30°
40°
20.
Намерете мярката на \(\sphericalangle ABC\).
45°
40°
30°
25°
21.
Намерете отношението $HN : BN$.
3:2
1:3
2:1
2:3
22.
Намерете отношението на лицата $S$
ΔNMH
: $S$
ΔCMH
.
3:1
2:3
1:3
3:2
Спортните екипи на учениците в едно училище са четири вида, както са показани на диаграмата.
23.
Каква част от учениците
имат
в екипа си жълт цвят?
$\frac {1}{3}$
$\frac {1}{2}$
$\frac {2}{3}$
$\frac {1}{4}$
24.
Каква част от учениците
нямат
в екипа си червен цвят?
$\frac {1}{3}$
$\frac {2}{3}$
$\frac {5}{6}$
$\frac {7}{12}$
25.
Какъв е процентът на учениците, които имат син цвят в екипа си?
20%
25%
35%
23%
26.
Колко градуса е ъгълът на сектора на учениците с червено-сините екипи?
60°
55°
45°
57°