Решени тестове
Вход
Учебни помагала
Контакти
Вход с Facebook
4
ти
клас
5
и
клас
6
и
клас
7
и
клас
8
и
клас
9
и
клас
12
и
клас
10
и
клас
Езици
Програмиране
Занимателни тестове
Тест по математика за VII клас, 2020-случайни въпроси
НАЦИОНАЛНО ВЪНШНО ОЦЕНЯВАНЕ ПО МАТЕМАТИКА – VII клас
Примерен тест със
с
лучайни въпроси
, модул 1
7
и
клас - Математика - Външно оценяване
1.
Стойността на израза $12 – (6 + m)$ при $m = –12$ е:
–18
–6
18
6
2.
Разликата 25.25 – 5.5 е равна на произведението:
20.20
25.20.5
25.25.25
20.30
3.
Турист изкачва един връх за 6 чàса със скорост $x$ km/h и се връща обратно за 3 пъти по-малко време, като се движи с 4 km/h по-бързо. Уравнението, което изразява тази зависимост, е:
$6x=2(x+4)$
$6x=3(x+4)$
$6x=2(x-4)$
$6x=3(x-4)$
4.
Кое от неравенствата НЯМА решение?
$t − t < −1$
$t − 2t < t$
$0t < 1 − t$
$t ≤ 3t − 2t$
5.
Коренът на уравнението $2 – 2x = \frac{1}{2}$ е:
$\frac{3}{4}$
$1\frac{1}{2}$
$0$
$1\frac{1}{4}$
6.
На чертежа $AC = BC$. Мярката на \(\sphericalangle ACB\) е:
25°
75°
80°
50°
7.
На чертежа $OL$
→
е ъглополовяща на \(\sphericalangle AOC\). Ако мярката на \(\sphericalangle AOC\) е с 40% по-голяма от мярката на \(\sphericalangle BOC\), то мярката на \(\sphericalangle BOL\) е:
52° 30'
127° 30'
75°
105°
8.
Числата 0 и 2 са корените на уравнението:
$|x+1|=1$
$|x−2|=0$
$−|x−1|=−1$
$|x−1|=−1$
9.
В склад доставили 5200 кг ягоди. Първия ден продали 20% от цялото количество, а втория ден – $\frac{3}{4}$ от останалото. Колко кг ягоди са продали през втория ден?
3900
4160
3120
2600
10.
В $ΔABC$ $BM$ е медиана. Върху лъча $BM$ е взета точка $P$ така, че $ΔAMP \cong ΔCMB$. Ако \(\sphericalangle ABM\) = 30° и \(\sphericalangle APB\) = 40°, на колко градуса е равен \(\sphericalangle ABC\)?
30°
110°
70°
40°
11.
Изразът $a^2 + 2a – 3$ е тъждествено равен на:
$(a + 3) (a – 1)$
$a (a + 3) – 3$
$(a^2 + 1) (a – 3)$
$(2a – 1) (\frac{a}{2} + 3)$
12.
По-големият корен на уравнението $(x + 2)^3 – (3x + 2) (x + 4) = x (-x – 1)^2$ е:
0
7
–3
3
13.
Двама работници трябва да свършат определена работа. Единият може да свърши сам работата за $4$ $h$, а другият - за $12$ $h$. Първоначално единият работи сам $t$ $min$, след което двамата довършват работата. Ако $t$ е не повече от $20$ $min$, за колко възможно най-малко часа двамата работници ще свършат работата?
$3$ $h$ $45$ $min$
$3$ $h$
$2$ $h$ $45$ $min$
$5$ $h$
14.
На чертежа точката $D$ от отсечката $AC$ е избрана така, че $AD = DB = BC$. Мярката на \(\sphericalangle ABC\) e:
8°
43°
51°
86°
15.
В трамвай могат да пътуват не повече от 70 души. Половината от пътниците, качили се в трамвая на първата спирка, заели някои от седящите места. След първата спирка броят на пътниците се увеличил с 8%. Колко пътници са се качили на първата спирка?
54
49
50
42
16.
Ученици от едно училище купили 40 билета за театър за 488 лева. Един билет на партера струва 14 лева, а един билет на балкона струва 10 лева. По колко билета са купили от двата вида?
25 и 15
24 и 16
23 и 17
22 и 18
17.
След като похарчил $\frac{4}{5}$ от парите, които имал, на Мони му останали 20 лева. Колко
лева е похарчил Мони?
80
25
16
100
18.
Ъглополовящите $AM$ и $BN$ в успоредника $ABCD$ разделят страната $DC$ на три равни части. Дължината на страната $BC$ е $a$ cm. Периметърът на успоредника $ABCD$ в сантиметри е равен на:
$8a$
$16a$
$10a$
$6a$
В $ΔABC$ отсечката $CH$ е височина и точка $Н$ е вътрешна за отсечката $АВ$. Точката $M$ е средата на $BC$ и $AH = CH = HM$. Точката $N$ е от отсечката $HB$ и е такава, че $HN = MN = NB$.
Даденият чертеж е само за илюстрация – не е начертан в мащаб и не е предназначен за директно измерване на дължини на отсечки и мерки на ъгли.
19.
Намерете мярката на \(\sphericalangle CAB\).
50°
45°
40°
30°
20.
Намерете мярката на \(\sphericalangle ABC\).
25°
45°
30°
40°
21.
Намерете отношението $HN : BN$.
3:2
2:1
2:3
1:3
22.
Намерете отношението на лицата $S$
ΔNMH
: $S$
ΔCMH
.
1:3
3:2
2:3
3:1
Диаграмата показва броя на учениците стипендианти за учебната 2018/2019 и 2019/2020 година от едно училище.
23.
Какво е отношението на броя на учениците, получили стипендии през 2018/2019 година, към този през 2019/2020 година?
\( \frac {31} {41}\)
\( \frac 4 5 \)
\( \frac 5 7 \)
\( \frac 3 4\)
24.
Рaзмерът на една месечна стипендия през 2018/2019 г. е бил 105 лева, а през 2019/2020 г. – 135 лева. Всеки от стипендиантите получава стипендия през 10 от дванайсетте месеца на учебната година. Колко лева са необходими, за да се изплатят стипендиите общо за двете учебни години в училището?