Тест по математика за VII клас, 2020-случайни въпроси


НАЦИОНАЛНО ВЪНШНО ОЦЕНЯВАНЕ ПО МАТЕМАТИКА – VII клас

Примерен тест със случайни въпроси, модул 1


7и клас - Математика - Външно оценяване
1. Ако $b=\frac{1}{6}$, то $(b–1)–3(1–b)+4(2b–1)$ е равно на:







2. Изразът $(1 − 2x)^2$ е тъждествено равен на:







3. Турист изкачва един връх за 6 чàса със скорост $x$ km/h и се връща обратно за 3 пъти по-малко време, като се движи с 4 km/h по-бързо. Уравнението, което изразява тази зависимост, е:







4. При $а = –2$ изразът $5–3(a–b)$ e тъждествено равен на:







5. Коренът на уравнението $(5 + x) (5 – x) – 5x (3 – \frac{1}{5}x) = 20$ е:







6. На чертежа $AC = BC$. Мярката на \(\sphericalangle ACB\) е:







7. Мярката на \(\sphericalangle BCM\) от чертежа е:








8. Числата 1 и 0 са корените на уравнението:





9. В склад доставили 5200 кг ягоди. Първия ден продали 20% от цялото количество, а втория ден – $\frac{3}{4}$ от останалото. Колко кг ягоди са продали през втория ден?







10. В $ΔABC$ $BM$ е медиана. Върху лъча $BM$ е взета точка $P$ така, че $ΔAMP \cong ΔCMB$. Ако \(\sphericalangle ABM\) = 30° и \(\sphericalangle APB\) = 40°, на колко градуса е равен \(\sphericalangle ABC\)?
 

 







11. Многочленът $2(2y − 5) − 4y(2y − 5)$ е тъждествено равен на:





12. Решенията на неравенството ${2x-3 \over 3}>{2x+3 \over 2}$ са:





13. Басейн се пълни от два крана. Единият може да го напълни за 20 минути, а другият – за 30 минути. За колко минути ще се напълни басейнът, ако се отворят и двата крана едновременно?







14. На чертежа $ΔABC$ е равнобедрен ($AC=BC$). Външният ъгъл при върха $C$ е равен на 86° и \(\sphericalangle DAB\)=15° . Мярката на $x$ e:







15. В трамвай могат да пътуват не повече от 70 души. Половината от пътниците, качили се в трамвая на първата спирка, заели някои от седящите места. След първата спирка броят на пътниците се увеличил с 8%. Колко пътници са се качили на първата спирка?





16. Две от страните на триъгълник са с дължини 5 cm и 7 cm, а третата има дължина, която се изразява с естествено число сантиметри. Броят на триъгълниците, които отговарят на това условие, е:





17. От София до Бургас разстоянието по определен маршрут е 390 km. От двата града един срещу друг тръгнали две превозни средства, като едното превозно средство се движело със скорост, която е с 10 km/h по-голяма от скоростта на другото превозно средство. След 3 часа пътуване двете превозни средства се намирали на разстояние 24 km един от друг? Каква е възможно най-голямата скорост, с която се е движело по-бавното превозно средство?







18. Обемът на дадения на чертежа прав кръгов конус е:







За равнобедрения $ΔABC$ е дадено, че \(\sphericalangle ACB\) = 120° и $AL$ е ъглополовяща на \(\sphericalangle BAC\). На страната $AB$ е взета точка $M$ така, че $AM = AC$.



19. Намерете големината на \(\sphericalangle ALM\) в градуси.







20. Ако $CL = m$ и $BL = n$, намерете периметърът на $ΔMBL$.







На диаграмата е показан броят на продадените леки автомобили от една автокъща през месеците април, май, юни и юли.



21. През кой от месеците продажбите на автомобили нарастват двойно спрямо предния месец?


22. Каква част от общия брой продадени автомобили за четирите месеца са тези, които са продадени през април?







23. Колко автомобила са продавани средно за месец през периода май – юли?


24. С колко процента е нараснала продажбата на леки автомобили през юли спрямо юни?