Решени тестове
Вход
Учебни помагала
Контакти
Вход с Facebook
4
ти
клас
5
и
клас
6
и
клас
7
и
клас
8
и
клас
9
и
клас
12
и
клас
10
и
клас
Езици
Програмиране
Занимателни тестове
Тест по математика за VII клас, 2020-случайни въпроси
НАЦИОНАЛНО ВЪНШНО ОЦЕНЯВАНЕ ПО МАТЕМАТИКА – VII клас
Примерен тест със
с
лучайни въпроси
, модул 1
7
и
клас - Математика - Външно оценяване
1.
Стойността на израза $12 – (6 + m)$ при $m = –12$ е:
6
18
–6
–18
2.
Кое числово равенство е вярно?
$\frac{1}{3} + \frac{1}{5} = \frac{1+1}{3.5}$
$\frac{1}{3} + \frac{1}{5} = \frac{1}{3+5}$
$\frac{1}{3} + \frac{1}{5} = \frac{1+1}{3+5}$
$\frac{1}{3} + \frac{1}{5} = \frac{5+3}{3.5}$
3.
Нормалният вид на $(x – 0,2)^2$ е многочленът:
$x^2 + 0,04$
$x^2 – 0,4x + 0,04$
$x^2 – 0,4$
$x^2 – 0,4x + 0,4$
4.
Кое от неравенствата НЯМА решение?
$t − t < −1$
$t − 2t < t$
$t ≤ 3t − 2t$
$0t < 1 − t$
5.
Уравнението $−x^2 = (4 − x)x$ е еквивалентно на:
$4x = 1$
$−5x = 0$
$0x = 4$
$x = x$
6.
На чертежа правите $m$ и $n$ са успоредни и \(\sphericalangle MAN\) =60°. Ако \(\sphericalangle NAQ\) : \(\sphericalangle AQN\) = 3:1, тогава \(\sphericalangle NQA\) е равен на:
50°
30°
45°
40°
7.
На чертежа $OL$
→
е ъглополовяща на \(\sphericalangle AOC\). Ако мярката на \(\sphericalangle AOC\) е с 40% по-голяма от мярката на \(\sphericalangle BOC\), то мярката на \(\sphericalangle BOL\) е:
105°
52° 30'
75°
127° 30'
8.
Корените на уравнението $2 |1 – x| – 5 = –1$ са:
1 и –3
–1 и –3
1 и 3
–1 и 3
9.
Колко грама захар има в 500 грама 5% захарен разтвор?
5
25
250
100
10.
Даден е равностранен триъгълник $ABC$. На лъча $BA$
→
е построена отсечката $AM = AC$ (точката $A$ е между точките $M$ и $B$) и на лъча $AB$
→
е построена отсечката $BN = BC$ (точката $B$ е между точките $N$ и $A$). Тогава \(\sphericalangle MCN\) е равен на:
120°
180°
150°
135°
11.
Изразът $(a – 1)^3 – (a – 1)(a^2 + a + 1)$ е тъждествено равен на:
$0$
$3a^2 + 3a$
$–3a^2 + 3a$
$–2$
12.
Коренът на уравнението $(x − 1)^2 − x(x − 1) = 0$ е:
−2
2
1
1
13.
Камион и лека кола тръгват едновременно един срещу друг от два пункта, които са на разстояние $400$ $km$ един от друг. Ако превозните средства се движат с постоянна скорост, съответно $60$ $km/h$ и $90$ $km/h$ , те ще се срещнат след:
$2$ $h$
$2$ $h$ $40$ $min$
$2$ $h$ $36$ $min$
$2$ $h$ $20$ $min$
14.
На чертежа $ΔABC$ е равнобедрен ($AC=BC$). Външният ъгъл при върха $C$ е равен на 86° и \(\sphericalangle DAB\)=15° . Мярката на $x$ e:
28°
58°
94°
43°
15.
След намаление на цената с 20% готварска печка струва 220 лв. Цената на печката
преди намалението е била:
275 лв.
1100 лв.
240 лв.
264 лв.
16.
Ако едно естествено число умножим с 4 и от полученото произведение извадим 7,
ще се получи число, по-малко от 13. Сборът на всички естествени числа с това
свойство е:
15
12
11
10
17.
От София до Бургас разстоянието по определен маршрут е 390 km. От двата града един срещу друг тръгнали две превозни средства, като едното превозно средство се движело със скорост, която е с 10 km/h по-голяма от скоростта на другото превозно средство. След 3 часа пътуване двете превозни средства се намирали на разстояние 24 km един от друг? Каква е възможно най-голямата скорост, с която се е движело по-бавното превозно средство?
60 km/h
65 km/h
54 km/h
64 km/h
18.
На чертежа $CD$ е височина на правоъгълния $ΔABC$ към хипотенузата му $AB$. Точката M е среда на страната $AC$, а точката $N$ е среда на страната $BC$. Ако $AC = 6$ $cm$ и $BC = $8$ $cm$, лицето на $ΔDN$M е:
7
cm
²
12
cm
²
6
cm
²
14
cm
²
В $ΔABC$ отсечката $CH$ е височина и точка $Н$ е вътрешна за отсечката $АВ$. Точката $M$ е средата на $BC$ и $AH = CH = HM$. Точката $N$ е от отсечката $HB$ и е такава, че $HN = MN = NB$.
Даденият чертеж е само за илюстрация – не е начертан в мащаб и не е предназначен за директно измерване на дължини на отсечки и мерки на ъгли.
19.
Намерете мярката на \(\sphericalangle CAB\).
30°
40°
45°
50°
20.
Намерете мярката на \(\sphericalangle ABC\).
30°
40°
25°
45°
21.
Намерете отношението $HN : BN$.
2:3
1:3
2:1
3:2
22.
Намерете отношението на лицата $S$
ΔNMH
: $S$
ΔCMH
.
1:3
3:1
3:2
2:3
Диаграмата показва броя на учениците стипендианти за учебната 2018/2019 и 2019/2020 година от едно училище.
23.
Какво е отношението на броя на учениците, получили стипендии през 2018/2019 година, към този през 2019/2020 година?
\( \frac {31} {41}\)
\( \frac 4 5 \)
\( \frac 3 4\)
\( \frac 5 7 \)
24.
Рaзмерът на една месечна стипендия през 2018/2019 г. е бил 105 лева, а през 2019/2020 г. – 135 лева. Всеки от стипендиантите получава стипендия през 10 от дванайсетте месеца на учебната година. Колко лева са необходими, за да се изплатят стипендиите общо за двете учебни години в училището?