Решени тестове
Вход
Учебни помагала
Контакти
Вход с Facebook
4
ти
клас
5
и
клас
6
и
клас
7
и
клас
8
и
клас
9
и
клас
12
и
клас
10
и
клас
Езици
Програмиране
Занимателни тестове
Тест по математика за VII клас, 2020-случайни въпроси
НАЦИОНАЛНО ВЪНШНО ОЦЕНЯВАНЕ ПО МАТЕМАТИКА – VII клас
Примерен тест със
с
лучайни въпроси
, модул 1
7
и
клас - Математика - Външно оценяване
1.
Стойността на израза $12 – (6 + m)$ при $m = –12$ е:
6
–18
18
–6
2.
Ако $\frac{3^8.9^3}{27^3} = 3^m$, то $m$ е равно на:
3
2
4
5
3.
При $a=–1$ най-малка стойност има изразът:
$a^2$
$a^3–1$
$a^3$
$a^2–2$
4.
Посочете невярното равенство:
$x^2 – 6x + 9 = (x – 3)^2$
$64 – 16a + a^2 = (8 – a)^2$
$x^3 + 6x^2 + (2x + 8) = (x + 2)^3$
$\frac{a^2}{9} – \frac{2ab}{3} + b^2 = (\frac{a}{3} + b)^2$
5.
Коренът на уравнението $2 – 2x = \frac{1}{2}$ е:
$\frac{3}{4}$
$1\frac{1}{4}$
$0$
$1\frac{1}{2}$
6.
На чертежа $△ABC$ е разностранен. Ако $AO = OB$, то точка $O$ лежи на:
медианата през $C$ към $AB$
ъглополовящата на \(\sphericalangle ACB\)
височината през $C$ към $AB$
симетралата на страната $AB$
7.
На чертежа правите $a$, $b$ и $c$ са успоредни. Големината на ъгъл $ x $ е:
30°
32°
18°
42°
8.
Числата 0 и 2 са корените на уравнението:
$−|x−1|=−1$
$|x−1|=−1$
$|x+1|=1$
$|x−2|=0$
9.
Намалих 6 пъти естественото число $n$ и получих число, по-голямо от 1,8. Най-малкото число $n$, за което това е вярно, е:
10
1
12
11
10.
В $ΔABC$ $BM$ е медиана. Върху лъча $BM$ е взета точка $P$ така, че $ΔAMP \cong ΔCMB$. Ако \(\sphericalangle ABM\) = 30° и \(\sphericalangle APB\) = 40°, на колко градуса е равен \(\sphericalangle ABC\)?
30°
40°
110°
70°
11.
Многочленът $2(2y − 5) − 4y(2y − 5)$ е тъждествено равен на:
$4(2y − 5)(1 − y)$
$2(2y − 5)(1 + 2y)$
$−2y(2y − 5)$
$2(2y − 5)(1 − 2y)$
12.
Решенията на неравенството ${2x-3 \over 3}>{2x+3 \over 2}$ са:
${x>-7,5}$
${x<-17}$
${x>3}$
${x<-7,5}$
13.
Двама работници трябва да свършат определена работа. Единият може да свърши сам работата за $4$ $h$, а другият - за $12$ $h$. Първоначално единият работи сам $t$ $min$, след което двамата довършват работата. Ако $t$ е не повече от $20$ $min$, за колко възможно най-малко часа двамата работници ще свършат работата?
$5$ $h$
$3$ $h$
$2$ $h$ $45$ $min$
$3$ $h$ $45$ $min$
14.
На чертежа точката $D$ от отсечката $AC$ е избрана така, че $AD = DB = BC$. Мярката на \(\sphericalangle ABC\) e:
43°
8°
51°
86°
15.
Моторна лодка изминава разстоянието между две пристанища по течението за 3 часа, а срещу течението – за 4 часа. Ако скоростта на течението е 6 км/ч, то разстоянието между пристанищата е:
168 км
126 км
42 км
144 км
16.
Цената за пътуване с такси се определя по формулата $C = 1,20 + 0,80.k$, където $k$ са изминатите километри, а $C$ е цената в левове. От тази формула изминатите километри $k$ за дадена цена $С$ се определят така:
$k = C:2,00$
$k = (C + 1,20).0,80$
$k = 0,80.C – 1,20$
$k = (C – 1,20):0,80$
17.
След като похарчил $\frac{4}{5}$ от парите, които имал, на Мони му останали 20 лева. Колко
лева е похарчил Мони?
80
100
16
25
18.
Ъглополовящите $AM$ и $BN$ в успоредника $ABCD$ разделят страната $DC$ на три равни части. Дължината на страната $BC$ е $a$ cm. Периметърът на успоредника $ABCD$ в сантиметри е равен на:
$16a$
$10a$
$8a$
$6a$
За равнобедрения $ΔABC$ е дадено, че \(\sphericalangle ACB\) = 120° и $AL$ е ъглополовяща на \(\sphericalangle BAC\). На страната $AB$ е взета точка $M$ така, че $AM = AC$.
19.
Намерете големината на \(\sphericalangle ALM\) в градуси.
60°
45°
55°
35°
20.
Ако $CL = m$ и $BL = n$, намерете периметърът на $ΔMBL$.
$2n + m$
$2m + n$
$3m + n$
$m + 3n$
На диаграмата е показан броят на продадените леки автомобили от една автокъща през месеците април, май, юни и юли.
21.
През кой от месеците продажбите на автомобили нарастват двойно спрямо предния месец?
22.
Каква част от общия брой продадени автомобили за четирите месеца са тези, които са продадени през април?
\( \frac 1 4 \)
0,4
0,2
\( \frac 1 6 \)
23.
Колко автомобила са продавани средно за месец през периода май – юли?
24.
С колко процента е нараснала продажбата на леки автомобили през юли спрямо юни?