Решени тестове
Вход
Учебни помагала
Контакти
Вход с Facebook
4
ти
клас
5
и
клас
6
и
клас
7
и
клас
8
и
клас
9
и
клас
12
и
клас
10
и
клас
Езици
Програмиране
Занимателни тестове
Тест по математика за VII клас, 2020-случайни въпроси
НАЦИОНАЛНО ВЪНШНО ОЦЕНЯВАНЕ ПО МАТЕМАТИКА – VII клас
Примерен тест със
с
лучайни въпроси
, модул 1
7
и
клас - Математика - Външно оценяване
1.
Изразът $x + \frac{1}{4}$ е тъждествено равен на:
$4x+1$
$x+4$
$x+0,25$
$x+1,4$
2.
Изразът $(1 − 2x)^2$ е тъждествено равен на:
$1 − 4x − 4x^2$
$1 + 4x^2$
$1 − 4x^2$
$1 − 4x + 4x^2$
3.
Турист изкачва един връх за 6 чàса със скорост $x$ km/h и се връща обратно за 3 пъти по-малко време, като се движи с 4 km/h по-бързо. Уравнението, което изразява тази зависимост, е:
$6x=3(x+4)$
$6x=2(x-4)$
$6x=2(x+4)$
$6x=3(x-4)$
4.
Кое от неравенствата НЯМА решение?
$0t < 1 − t$
$t − 2t < t$
$t − t < −1$
$t ≤ 3t − 2t$
5.
Уравнението $−x^2 = (4 − x)x$ е еквивалентно на:
$−5x = 0$
$0x = 4$
$4x = 1$
$x = x$
6.
На чертежа $△ABC$ е разностранен. Ако $AO = OB$, то точка $O$ лежи на:
медианата през $C$ към $AB$
ъглополовящата на \(\sphericalangle ACB\)
височината през $C$ към $AB$
симетралата на страната $AB$
7.
На чертежа правите $a$, $b$ и $c$ са успоредни. Големината на ъгъл $ x $ е:
18°
30°
42°
32°
8.
Кой израз е тъждествено равен на многочлена, отговарящ на следното описание:
Към втората степен на $4y$ е прибавено произведението на $y$ и $4$.
$4y(4y+1)$
$4y(y+1)$
$4(4y+1)$
$4y(2y+1)$
9.
Колко грама захар има в 500 грама 5% захарен разтвор?
25
5
100
250
10.
В $ΔABC$ $BM$ е медиана. Върху лъча $BM$ е взета точка $P$ така, че $ΔAMP \cong ΔCMB$. Ако \(\sphericalangle ABM\) = 30° и \(\sphericalangle APB\) = 40°, на колко градуса е равен \(\sphericalangle ABC\)?
110°
30°
40°
70°
11.
Изразът $a^2 + 2a – 3$ е тъждествено равен на:
$(a + 3) (a – 1)$
$(a^2 + 1) (a – 3)$
$(2a – 1) (\frac{a}{2} + 3)$
$a (a + 3) – 3$
12.
По-големият корен на уравнението $(x + 2)^3 – (3x + 2) (x + 4) = x (-x – 1)^2$ е:
7
0
3
–3
13.
Двама работници трябва да свършат определена работа. Единият може да свърши сам работата за $4$ $h$, а другият - за $12$ $h$. Първоначално единият работи сам $t$ $min$, след което двамата довършват работата. Ако $t$ е не повече от $20$ $min$, за колко възможно най-малко часа двамата работници ще свършат работата?
$5$ $h$
$3$ $h$
$3$ $h$ $45$ $min$
$2$ $h$ $45$ $min$
14.
На чертежа $ΔABC$ е правоъгълен, $CM$ е медиана към хипотенузата $AB$, $CH$ е височина към хипотенузата, $CM = BC$ и $CH = 3$ $cm$. Дължината на страната $AC$ е:
5 cm
6 cm
4 cm
3 cm
15.
В трамвай могат да пътуват не повече от 70 души. Половината от пътниците, качили се в трамвая на първата спирка, заели някои от седящите места. След първата спирка броят на пътниците се увеличил с 8%. Колко пътници са се качили на първата спирка?
50
54
42
49
16.
Ако едно естествено число умножим с 4 и от полученото произведение извадим 7,
ще се получи число, по-малко от 13. Сборът на всички естествени числа с това
свойство е:
10
11
12
15
17.
Бабата на Камен го поканила за обяд в 12 часá. След като избрал маршрута, той преценил, че ако тръгне в 10 часá и 30 минути с ролери, ще закъснее с 15 минути. Затова Камен тръгнал в 10 часá и 30 минути с велосипед по същия маршрут и пристигнал с 20 минути по-рано от уречения час. Скоростта на Камен с ролери е със 7 кm/h по-малка, отколкото скоростта му с велосипед. Колко километра е маршрутът от дома на Камен до дома на баба му?
24 km
25 km
25,5 km
24,5 km
18.
Ъглополовящите $AM$ и $BN$ в успоредника $ABCD$ разделят страната $DC$ на три равни части. Дължината на страната $BC$ е $a$ cm. Периметърът на успоредника $ABCD$ в сантиметри е равен на:
$8a$
$6a$
$16a$
$10a$
В $ΔABC$ отсечката $CH$ е височина и точка $Н$ е вътрешна за отсечката $АВ$. Точката $M$ е средата на $BC$ и $AH = CH = HM$. Точката $N$ е от отсечката $HB$ и е такава, че $HN = MN = NB$.
Даденият чертеж е само за илюстрация – не е начертан в мащаб и не е предназначен за директно измерване на дължини на отсечки и мерки на ъгли.
19.
Намерете мярката на \(\sphericalangle CAB\).
40°
50°
45°
30°
20.
Намерете мярката на \(\sphericalangle ABC\).
25°
30°
40°
45°
21.
Намерете отношението $HN : BN$.
1:3
2:3
3:2
2:1
22.
Намерете отношението на лицата $S$
ΔNMH
: $S$
ΔCMH
.
2:3
3:1
1:3
3:2
Спортните екипи на учениците в едно училище са четири вида, както са показани на диаграмата.
23.
Каква част от учениците
имат
в екипа си жълт цвят?
$\frac {2}{3}$
$\frac {1}{4}$
$\frac {1}{3}$
$\frac {1}{2}$
24.
Каква част от учениците
нямат
в екипа си червен цвят?
$\frac {2}{3}$
$\frac {1}{3}$
$\frac {7}{12}$
$\frac {5}{6}$
25.
Какъв е процентът на учениците, които имат син цвят в екипа си?
23%
35%
25%
20%
26.
Колко градуса е ъгълът на сектора на учениците с червено-сините екипи?
57°
55°
60°
45°