Тест по математика за VII клас, 2020-случайни въпроси


НАЦИОНАЛНО ВЪНШНО ОЦЕНЯВАНЕ ПО МАТЕМАТИКА – VII клас

Примерен тест със случайни въпроси, модул 1


7и клас - Математика - Външно оценяване
1. Стойността на израза $12 – (6 + m)$ при $m = –12$ е:







2. Изразът $(1 − 2x)^2$ е тъждествено равен на:







3. При $a=–1$ най-малка стойност има изразът:







4. Коренът на уравнението $3(4 – x) = –4$ е:







5. Уравнението $−x^2 = (4 − x)x$ е еквивалентно на:





6. По данните от чертежа ъглите $x$ и $y$ са в отношение:

 

 







7. На чертежа правите $a$, $b$ и $c$ са успоредни. Големината на ъгъл $ x $ е:







8. Корените на уравнението $2 |1 – x| – 5 = –1$ са:







9. В склад доставили 5200 кг ягоди. Първия ден продали 20% от цялото количество, а втория ден – $\frac{3}{4}$ от останалото. Колко кг ягоди са продали през втория ден?







10. Мярката на \(\sphericalangle BAC\) от чертежа е:








11. Изразът $mx-2x-2y+my$ е тъждествено равен на израза:





12. Коренът на уравнението $(x − 1)^2 − x(x − 1) = 0$ е:





13. Камион и лека кола тръгват едновременно един срещу друг от два пункта, които са на разстояние $400$ $km$ един от друг. Ако превозните средства се движат с постоянна скорост, съответно $60$ $km/h$ и $90$ $km/h$ , те ще се срещнат след:







14. На чертежа $ΔABC$ е равнобедрен ($AC=BC$). Външният ъгъл при върха $C$ е равен на 86° и \(\sphericalangle DAB\)=15° . Мярката на $x$ e:







15. В трамвай могат да пътуват не повече от 70 души. Половината от пътниците, качили се в трамвая на първата спирка, заели някои от седящите места. След първата спирка броят на пътниците се увеличил с 8%. Колко пътници са се качили на първата спирка?





16. Ученици от едно училище купили 40 билета за театър за 488 лева. Един билет на партера струва 14 лева, а един билет на балкона струва 10 лева. По колко билета са купили от двата вида?





17. Зар се хвърля три пъти и получените точки се събират. Броят на възможните сборове на трите числа е:





18. На чертежа $AM$ и $BN$ са ъглополовящи в $ΔABC$.

Кое равенство вярно изразява ъгъл $x$ чрез ъгъл $δ$?







За равнобедрения $ΔABC$ е дадено, че \(\sphericalangle ACB\) = 120° и $AL$ е ъглополовяща на \(\sphericalangle BAC\). На страната $AB$ е взета точка $M$ така, че $AM = AC$.



19. Намерете големината на \(\sphericalangle ALM\) в градуси.







20. Ако $CL = m$ и $BL = n$, намерете периметърът на $ΔMBL$.







Диаграмата показва броя на учениците стипендианти за учебната 2018/2019 и 2019/2020 година от едно училище.



21. Какво е отношението на броя на учениците, получили стипендии през 2018/2019 година, към този през 2019/2020 година?







22. Рaзмерът на една месечна стипендия през 2018/2019 г. е бил 105 лева, а през 2019/2020 г. – 135 лева. Всеки от стипендиантите получава стипендия през 10 от дванайсетте месеца на учебната година. Колко лева са необходими, за да се изплатят стипендиите общо за двете учебни години в училището?