Решени тестове
Вход
Учебни помагала
Контакти
Вход с Facebook
4
ти
клас
5
и
клас
6
и
клас
7
и
клас
8
и
клас
9
и
клас
12
и
клас
10
и
клас
Езици
Програмиране
Занимателни тестове
Тест по математика за VII клас, 2020-случайни въпроси
НАЦИОНАЛНО ВЪНШНО ОЦЕНЯВАНЕ ПО МАТЕМАТИКА – VII клас
Примерен тест със
с
лучайни въпроси
, модул 1
7
и
клас - Математика - Външно оценяване
1.
Изразът $x + \frac{1}{4}$ е тъждествено равен на:
$x+0,25$
$x+4$
$x+1,4$
$4x+1$
2.
Изразът $(1 − 2x)^2$ е тъждествено равен на:
$1 − 4x^2$
$1 − 4x + 4x^2$
$1 − 4x − 4x^2$
$1 + 4x^2$
3.
Нормалният вид на $(x – 0,2)^2$ е многочленът:
$x^2 + 0,04$
$x^2 – 0,4x + 0,4$
$x^2 – 0,4x + 0,04$
$x^2 – 0,4$
4.
Кое от неравенствата НЯМА решение?
$t − t < −1$
$t − 2t < t$
$0t < 1 − t$
$t ≤ 3t − 2t$
5.
Коренът на уравнението $2 – 2x = \frac{1}{2}$ е:
$1\frac{1}{4}$
$\frac{3}{4}$
$1\frac{1}{2}$
$0$
6.
На чертежа $AC = BC$. Мярката на \(\sphericalangle ACB\) е:
25°
50°
80°
75°
7.
Мярката на \(\sphericalangle BCM\) от чертежа е:
80°
110°
100°
140°
8.
Числата 0 и 2 са корените на уравнението:
$−|x−1|=−1$
$|x+1|=1$
$|x−2|=0$
$|x−1|=−1$
9.
В склад доставили 5200 кг ягоди. Първия ден продали 20% от цялото количество, а втория ден – $\frac{3}{4}$ от останалото. Колко кг ягоди са продали през втория ден?
4160
3120
2600
3900
10.
Мярката на \(\sphericalangle BAC\) от чертежа е:
10°
40°
80°
50°
11.
Изразът $a^2 + 2a – 3$ е тъждествено равен на:
$(2a – 1) (\frac{a}{2} + 3)$
$(a^2 + 1) (a – 3)$
$a (a + 3) – 3$
$(a + 3) (a – 1)$
12.
Коренът на уравнението $(x − 1)^2 − x(x − 1) = 0$ е:
1
2
1
−2
13.
Басейн се пълни от два крана. Единият може да го напълни за 20 минути, а другият – за 30 минути. За колко минути ще се напълни басейнът, ако се отворят и двата крана едновременно?
24
12
15
50
14.
На чертежа точката $D$ от отсечката $AC$ е избрана така, че $AD = DB = BC$. Мярката на \(\sphericalangle ABC\) e:
8°
43°
86°
51°
15.
След намаление на цената с 20% готварска печка струва 220 лв. Цената на печката
преди намалението е била:
264 лв.
1100 лв.
275 лв.
240 лв.
16.
Две от страните на триъгълник са с дължини 5 cm и 7 cm, а третата има дължина, която се изразява с естествено число сантиметри. Броят на триъгълниците, които отговарят на това условие, е:
8
9
7
10
17.
От София до Бургас разстоянието по определен маршрут е 390 km. От двата града един срещу друг тръгнали две превозни средства, като едното превозно средство се движело със скорост, която е с 10 km/h по-голяма от скоростта на другото превозно средство. След 3 часа пътуване двете превозни средства се намирали на разстояние 24 km един от друг? Каква е възможно най-голямата скорост, с която се е движело по-бавното превозно средство?
54 km/h
60 km/h
65 km/h
64 km/h
18.
На чертежа $CD$ е височина на правоъгълния $ΔABC$ към хипотенузата му $AB$. Точката M е среда на страната $AC$, а точката $N$ е среда на страната $BC$. Ако $AC = 6$ $cm$ и $BC = $8$ $cm$, лицето на $ΔDN$M е:
14
cm
²
6
cm
²
12
cm
²
7
cm
²
За равнобедрения $ΔABC$ е дадено, че \(\sphericalangle ACB\) = 120° и $AL$ е ъглополовяща на \(\sphericalangle BAC\). На страната $AB$ е взета точка $M$ така, че $AM = AC$.
19.
Намерете големината на \(\sphericalangle ALM\) в градуси.
60°
55°
35°
45°
20.
Ако $CL = m$ и $BL = n$, намерете периметърът на $ΔMBL$.
$2n + m$
$3m + n$
$m + 3n$
$2m + n$
На диаграмата е показан броят на продадените леки автомобили от една автокъща през месеците април, май, юни и юли.
21.
През кой от месеците продажбите на автомобили нарастват двойно спрямо предния месец?
22.
Каква част от общия брой продадени автомобили за четирите месеца са тези, които са продадени през април?
0,4
\( \frac 1 4 \)
0,2
\( \frac 1 6 \)
23.
Колко автомобила са продавани средно за месец през периода май – юли?
24.
С колко процента е нараснала продажбата на леки автомобили през юли спрямо юни?