Решени тестове
Вход
Учебни помагала
Контакти
Вход с Facebook
4
ти
клас
5
и
клас
6
и
клас
7
и
клас
8
и
клас
9
и
клас
12
и
клас
10
и
клас
Езици
Програмиране
Занимателни тестове
Тест по математика за VII клас, 2020-случайни въпроси
НАЦИОНАЛНО ВЪНШНО ОЦЕНЯВАНЕ ПО МАТЕМАТИКА – VII клас
Примерен тест със
с
лучайни въпроси
, модул 1
7
и
клас - Математика - Външно оценяване
1.
Изразът $x + \frac{1}{4}$ е тъждествено равен на:
$x+0,25$
$x+4$
$4x+1$
$x+1,4$
2.
Изразът $(1 − 2x)^2$ е тъждествено равен на:
$1 − 4x^2$
$1 − 4x + 4x^2$
$1 + 4x^2$
$1 − 4x − 4x^2$
3.
Многочленът $k^2 − 36$ е тъждествено равен на:
$(k − 18)(k + 18)$
$(k − 6)^2$
$(k − 6)(k + 6)$
$2(k − 18)$
4.
Коренът на уравнението $3(4 – x) = –4$ е:
$8$
$\frac{16}{3}$
$16$
$–\frac{4}{9}$
5.
Уравнението $−x^2 = (4 − x)x$ е еквивалентно на:
$−5x = 0$
$0x = 4$
$4x = 1$
$x = x$
6.
На чертежа правите $m$ и $n$ са успоредни и \(\sphericalangle MAN\) =60°. Ако \(\sphericalangle NAQ\) : \(\sphericalangle AQN\) = 3:1, тогава \(\sphericalangle NQA\) е равен на:
30°
50°
45°
40°
7.
На чертежа правите $a$ и $b$ са успоредни. Ъгъл $α$ е равен на:
85°
105°
75°
115°
8.
Числата 1 и 0 са корените на уравнението:
$|2x−1|=1$
$|2x−1|=−1$
$|2x−1|=0$
$−|2x−1|=1$
9.
Намалих 6 пъти естественото число $n$ и получих число, по-голямо от 1,8. Най-малкото число $n$, за което това е вярно, е:
10
1
11
12
10.
В $ΔABC$ $BM$ е медиана. Върху лъча $BM$ е взета точка $P$ така, че $ΔAMP \cong ΔCMB$. Ако \(\sphericalangle ABM\) = 30° и \(\sphericalangle APB\) = 40°, на колко градуса е равен \(\sphericalangle ABC\)?
110°
70°
40°
30°
11.
Изразът $(a – 1)^3 – (a – 1)(a^2 + a + 1)$ е тъждествено равен на:
$–3a^2 + 3a$
$0$
$3a^2 + 3a$
$–2$
12.
Коренът на уравнението $(x − 1)^2 − x(x − 1) = 0$ е:
−2
2
1
1
13.
Камион и лека кола тръгват едновременно един срещу друг от два пункта, които са на разстояние $400$ $km$ един от друг. Ако превозните средства се движат с постоянна скорост, съответно $60$ $km/h$ и $90$ $km/h$ , те ще се срещнат след:
$2$ $h$ $36$ $min$
$2$ $h$ $20$ $min$
$2$ $h$ $40$ $min$
$2$ $h$
14.
На чертежа $ΔABC$ е равнобедрен ($AC=BC$). Външният ъгъл при върха $C$ е равен на 86° и \(\sphericalangle DAB\)=15° . Мярката на $x$ e:
94°
58°
28°
43°
15.
След намаление на цената с 20% готварска печка струва 220 лв. Цената на печката
преди намалението е била:
240 лв.
264 лв.
275 лв.
1100 лв.
16.
Ако едно естествено число умножим с 4 и от полученото произведение извадим 7,
ще се получи число, по-малко от 13. Сборът на всички естествени числа с това
свойство е:
12
11
15
10
17.
Зар се хвърля три пъти и получените точки се събират. Броят на възможните сборове на трите числа е:
11
16
17
18
18.
Обемът на дадения на чертежа прав кръгов конус е:
$15 \pi \space см^3$
$4 \pi \space см^3$
$36 \pi \space см^3$
$12 \pi \space см^3$
В $ΔABC$ отсечката $CH$ е височина и точка $Н$ е вътрешна за отсечката $АВ$. Точката $M$ е средата на $BC$ и $AH = CH = HM$. Точката $N$ е от отсечката $HB$ и е такава, че $HN = MN = NB$.
Даденият чертеж е само за илюстрация – не е начертан в мащаб и не е предназначен за директно измерване на дължини на отсечки и мерки на ъгли.
19.
Намерете мярката на \(\sphericalangle CAB\).
40°
45°
30°
50°
20.
Намерете мярката на \(\sphericalangle ABC\).
25°
30°
40°
45°
21.
Намерете отношението $HN : BN$.
2:3
3:2
1:3
2:1
22.
Намерете отношението на лицата $S$
ΔNMH
: $S$
ΔCMH
.
1:3
3:1
2:3
3:2
Диаграмата показва броя на учениците стипендианти за учебната 2018/2019 и 2019/2020 година от едно училище.
23.
Какво е отношението на броя на учениците, получили стипендии през 2018/2019 година, към този през 2019/2020 година?
\( \frac 4 5 \)
\( \frac 3 4\)
\( \frac 5 7 \)
\( \frac {31} {41}\)
24.
Рaзмерът на една месечна стипендия през 2018/2019 г. е бил 105 лева, а през 2019/2020 г. – 135 лева. Всеки от стипендиантите получава стипендия през 10 от дванайсетте месеца на учебната година. Колко лева са необходими, за да се изплатят стипендиите общо за двете учебни години в училището?