Решени тестове
Вход
Учебни помагала
Контакти
Вход с Facebook
4
ти
клас
5
и
клас
6
и
клас
7
и
клас
8
и
клас
9
и
клас
12
и
клас
10
и
клас
Езици
Програмиране
Занимателни тестове
Тест по математика за VII клас, 2020-случайни въпроси
НАЦИОНАЛНО ВЪНШНО ОЦЕНЯВАНЕ ПО МАТЕМАТИКА – VII клас
Примерен тест със
с
лучайни въпроси
, модул 1
7
и
клас - Математика - Външно оценяване
1.
Стойността на израза $12 – (6 + m)$ при $m = –12$ е:
6
18
–6
–18
2.
Изразът $(1 − 2x)^2$ е тъждествено равен на:
$1 + 4x^2$
$1 − 4x + 4x^2$
$1 − 4x − 4x^2$
$1 − 4x^2$
3.
При $a=–1$ най-малка стойност има изразът:
$a^2$
$a^3–1$
$a^3$
$a^2–2$
4.
Коренът на уравнението $3(4 – x) = –4$ е:
$–\frac{4}{9}$
$8$
$16$
$\frac{16}{3}$
5.
Коренът на уравнението $(5 + x) (5 – x) – 5x (3 – \frac{1}{5}x) = 20$ е:
$2$
$\frac{1}{3}$
$3$
$– 3$
6.
По данните от чертежа ъглите $x$ и $y$ са в отношение:
5:1
3:1
4:1
7:2
7.
На чертежа правите $a$ и $b$ са успоредни. Ъгъл $α$ е равен на:
115°
85°
75°
105°
8.
Числата 0 и 2 са корените на уравнението:
$|x−2|=0$
$|x+1|=1$
$|x−1|=−1$
$−|x−1|=−1$
9.
Мария почиства сама жилището си за 6 чàса, а нейната майка почиства същото жилище за 4 чàса. За колко чàса ще почистят жилището, ако работят заедно?
2 чàса
2,04 чàса
1 час и 44 минути
2 чàса и 24 минути
10.
На чертежа $S$
1
и $S$
2
са симетралите съответно на страните $AC$ и $BC$ в триъгълника $ABC$. Ако $AB + KP = 24$ $cm$, дължината на $CO$ е:
$8$ $cm$
$12$ $cm$
$4$ $cm$
$6$ $cm$
11.
Изразът $mx-2x-2y+my$ е тъждествено равен на израза:
$(x+y)(m+2)$
$(x+y)(m-2)$
$(x-y)(m-2)$
$(x-y)(m+2)$
12.
По-големият корен на уравнението $(x + 2)^3 – (3x + 2) (x + 4) = x (-x – 1)^2$ е:
7
0
3
–3
13.
Двама работници трябва да свършат определена работа. Единият може да свърши сам работата за $4$ $h$, а другият - за $12$ $h$. Първоначално единият работи сам $t$ $min$, след което двамата довършват работата. Ако $t$ е не повече от $20$ $min$, за колко възможно най-малко часа двамата работници ще свършат работата?
$2$ $h$ $45$ $min$
$3$ $h$ $45$ $min$
$5$ $h$
$3$ $h$
14.
На чертежа точката $D$ от отсечката $AC$ е избрана така, че $AD = DB = BC$. Мярката на \(\sphericalangle ABC\) e:
51°
86°
8°
43°
15.
След намаление на цената с 20% готварска печка струва 220 лв. Цената на печката
преди намалението е била:
240 лв.
275 лв.
264 лв.
1100 лв.
16.
Ученици от едно училище купили 40 билета за театър за 488 лева. Един билет на партера струва 14 лева, а един билет на балкона струва 10 лева. По колко билета са купили от двата вида?
22 и 18
24 и 16
23 и 17
25 и 15
17.
От София до Бургас разстоянието по определен маршрут е 390 km. От двата града един срещу друг тръгнали две превозни средства, като едното превозно средство се движело със скорост, която е с 10 km/h по-голяма от скоростта на другото превозно средство. След 3 часа пътуване двете превозни средства се намирали на разстояние 24 km един от друг? Каква е възможно най-голямата скорост, с която се е движело по-бавното превозно средство?
65 km/h
54 km/h
60 km/h
64 km/h
18.
На чертежа $CD$ е височина на правоъгълния $ΔABC$ към хипотенузата му $AB$. Точката M е среда на страната $AC$, а точката $N$ е среда на страната $BC$. Ако $AC = 6$ $cm$ и $BC = $8$ $cm$, лицето на $ΔDN$M е:
14
cm
²
7
cm
²
6
cm
²
12
cm
²
За равнобедрения $ΔABC$ е дадено, че \(\sphericalangle ACB\) = 120° и $AL$ е ъглополовяща на \(\sphericalangle BAC\). На страната $AB$ е взета точка $M$ така, че $AM = AC$.
19.
Намерете големината на \(\sphericalangle ALM\) в градуси.
55°
35°
45°
60°
20.
Ако $CL = m$ и $BL = n$, намерете периметърът на $ΔMBL$.
$3m + n$
$m + 3n$
$2m + n$
$2n + m$
Спортните екипи на учениците в едно училище са четири вида, както са показани на диаграмата.
21.
Каква част от учениците
имат
в екипа си жълт цвят?
$\frac {2}{3}$
$\frac {1}{3}$
$\frac {1}{2}$
$\frac {1}{4}$
22.
Каква част от учениците
нямат
в екипа си червен цвят?
$\frac {2}{3}$
$\frac {1}{3}$
$\frac {5}{6}$
$\frac {7}{12}$
23.
Какъв е процентът на учениците, които имат син цвят в екипа си?
20%
23%
35%
25%
24.
Колко градуса е ъгълът на сектора на учениците с червено-сините екипи?
45°
57°
60°
55°