Решени тестове
Вход
Учебни помагала
Контакти
Вход с Facebook
4
ти
клас
5
и
клас
6
и
клас
7
и
клас
8
и
клас
9
и
клас
12
и
клас
10
и
клас
Езици
Програмиране
Занимателни тестове
Тест по математика за VII клас, 2020-случайни въпроси
НАЦИОНАЛНО ВЪНШНО ОЦЕНЯВАНЕ ПО МАТЕМАТИКА – VII клас
Примерен тест със
с
лучайни въпроси
, модул 1
7
и
клас - Математика - Външно оценяване
1.
Ако $b=\frac{1}{6}$, то $(b–1)–3(1–b)+4(2b–1)$ е равно на:
$6$
$–6$
$\frac{4}{6}$
$–\frac{4}{6}$
2.
Разликата 25.25 – 5.5 е равна на произведението:
20.20
25.25.25
20.30
25.20.5
3.
Многочленът $k^2 − 36$ е тъждествено равен на:
$(k − 18)(k + 18)$
$(k − 6)(k + 6)$
$2(k − 18)$
$(k − 6)^2$
4.
Кое от неравенствата НЯМА решение?
$0t < 1 − t$
$t − t < −1$
$t − 2t < t$
$t ≤ 3t − 2t$
5.
Равенството$(3x–2)^2=(*)–12x+4$ е тъждество, ако (*) се замени с едночлена:
$9x^2$
$3x$
$3x^2$
$9x$
6.
На чертежа $AC = BC$. Мярката на \(\sphericalangle ACB\) е:
80°
50°
25°
75°
7.
Мярката на \(\sphericalangle BCM\) от чертежа е:
110°
80°
140°
100°
8.
Корените на уравнението $2 |1 – x| – 5 = –1$ са:
1 и 3
–1 и –3
–1 и 3
1 и –3
9.
Намалих 6 пъти естественото число $n$ и получих число, по-голямо от 1,8. Най-малкото число $n$, за което това е вярно, е:
1
11
12
10
10.
В $ΔABC$ $BM$ е медиана. Върху лъча $BM$ е взета точка $P$ така, че $ΔAMP \cong ΔCMB$. Ако \(\sphericalangle ABM\) = 30° и \(\sphericalangle APB\) = 40°, на колко градуса е равен \(\sphericalangle ABC\)?
40°
110°
30°
70°
11.
Изразът $(a – 1)^3 – (a – 1)(a^2 + a + 1)$ е тъждествено равен на:
$–2$
$0$
$–3a^2 + 3a$
$3a^2 + 3a$
12.
Посочете едно цяло число и едно дробно число, които са решения на неравенството $9 ≤ –3x$.
–27, –2.2
–2, –2.5
2, 2.5
–3, –4.3
13.
Камион и лека кола тръгват едновременно един срещу друг от два пункта, които са на разстояние $400$ $km$ един от друг. Ако превозните средства се движат с постоянна скорост, съответно $60$ $km/h$ и $90$ $km/h$ , те ще се срещнат след:
$2$ $h$ $36$ $min$
$2$ $h$ $20$ $min$
$2$ $h$
$2$ $h$ $40$ $min$
14.
В $ΔABC$ $AL$ е ъглополовяща. Големината на \(\sphericalangle ALB\) е:
70°
95°
75°
85°
15.
Моторна лодка изминава разстоянието между две пристанища по течението за 3 часа, а срещу течението – за 4 часа. Ако скоростта на течението е 6 км/ч, то разстоянието между пристанищата е:
168 км
144 км
126 км
42 км
16.
Ако едно естествено число умножим с 4 и от полученото произведение извадим 7,
ще се получи число, по-малко от 13. Сборът на всички естествени числа с това
свойство е:
11
12
10
15
17.
Бабата на Камен го поканила за обяд в 12 часá. След като избрал маршрута, той преценил, че ако тръгне в 10 часá и 30 минути с ролери, ще закъснее с 15 минути. Затова Камен тръгнал в 10 часá и 30 минути с велосипед по същия маршрут и пристигнал с 20 минути по-рано от уречения час. Скоростта на Камен с ролери е със 7 кm/h по-малка, отколкото скоростта му с велосипед. Колко километра е маршрутът от дома на Камен до дома на баба му?
24,5 km
25 km
25,5 km
24 km
18.
Обемът на дадения на чертежа прав кръгов конус е:
$15 \pi \space см^3$
$12 \pi \space см^3$
$36 \pi \space см^3$
$4 \pi \space см^3$
За равнобедрения $ΔABC$ е дадено, че \(\sphericalangle ACB\) = 120° и $AL$ е ъглополовяща на \(\sphericalangle BAC\). На страната $AB$ е взета точка $M$ така, че $AM = AC$.
19.
Намерете големината на \(\sphericalangle ALM\) в градуси.
45°
60°
35°
55°
20.
Ако $CL = m$ и $BL = n$, намерете периметърът на $ΔMBL$.
$m + 3n$
$3m + n$
$2m + n$
$2n + m$
На диаграмата е показан броят на продадените леки автомобили от една автокъща през месеците април, май, юни и юли.
21.
През кой от месеците продажбите на автомобили нарастват двойно спрямо предния месец?
22.
Каква част от общия брой продадени автомобили за четирите месеца са тези, които са продадени през април?
0,2
0,4
\( \frac 1 4 \)
\( \frac 1 6 \)
23.
Колко автомобила са продавани средно за месец през периода май – юли?
24.
С колко процента е нараснала продажбата на леки автомобили през юли спрямо юни?