Решени тестове
Вход
Учебни помагала
Контакти
Вход с Facebook
4
ти
клас
5
и
клас
6
и
клас
7
и
клас
8
и
клас
9
и
клас
12
и
клас
10
и
клас
Езици
Програмиране
Занимателни тестове
Тест по математика за VII клас, 2020-случайни въпроси
НАЦИОНАЛНО ВЪНШНО ОЦЕНЯВАНЕ ПО МАТЕМАТИКА – VII клас
Примерен тест със
с
лучайни въпроси
, модул 1
7
и
клас - Математика - Външно оценяване
1.
Ако $b=\frac{1}{6}$, то $(b–1)–3(1–b)+4(2b–1)$ е равно на:
$–6$
$6$
$–\frac{4}{6}$
$\frac{4}{6}$
2.
Кое числово равенство е вярно?
$\frac{1}{3} + \frac{1}{5} = \frac{5+3}{3.5}$
$\frac{1}{3} + \frac{1}{5} = \frac{1+1}{3+5}$
$\frac{1}{3} + \frac{1}{5} = \frac{1}{3+5}$
$\frac{1}{3} + \frac{1}{5} = \frac{1+1}{3.5}$
3.
Нормалният вид на $(x – 0,2)^2$ е многочленът:
$x^2 – 0,4x + 0,04$
$x^2 + 0,04$
$x^2 – 0,4x + 0,4$
$x^2 – 0,4$
4.
Посочете невярното равенство:
$x^2 – 6x + 9 = (x – 3)^2$
$\frac{a^2}{9} – \frac{2ab}{3} + b^2 = (\frac{a}{3} + b)^2$
$64 – 16a + a^2 = (8 – a)^2$
$x^3 + 6x^2 + (2x + 8) = (x + 2)^3$
5.
Уравнението $−x^2 = (4 − x)x$ е еквивалентно на:
$x = x$
$4x = 1$
$0x = 4$
$−5x = 0$
6.
На чертежа $AC = BC$. Мярката на \(\sphericalangle ACB\) е:
80°
25°
75°
50°
7.
Мярката на \(\sphericalangle BCM\) от чертежа е:
80°
110°
140°
100°
8.
Кой израз е тъждествено равен на многочлена, отговарящ на следното описание:
Към втората степен на $4y$ е прибавено произведението на $y$ и $4$.
$4y(4y+1)$
$4y(2y+1)$
$4y(y+1)$
$4(4y+1)$
9.
Мария почиства сама жилището си за 6 чàса, а нейната майка почиства същото жилище за 4 чàса. За колко чàса ще почистят жилището, ако работят заедно?
2 чàса и 24 минути
1 час и 44 минути
2 чàса
2,04 чàса
10.
В $ΔABC$ $BM$ е медиана. Върху лъча $BM$ е взета точка $P$ така, че $ΔAMP \cong ΔCMB$. Ако \(\sphericalangle ABM\) = 30° и \(\sphericalangle APB\) = 40°, на колко градуса е равен \(\sphericalangle ABC\)?
70°
110°
40°
30°
11.
Многочленът $2(2y − 5) − 4y(2y − 5)$ е тъждествено равен на:
$2(2y − 5)(1 + 2y)$
$−2y(2y − 5)$
$4(2y − 5)(1 − y)$
$2(2y − 5)(1 − 2y)$
12.
Коренът на уравнението $(x − 1)^2 − x(x − 1) = 0$ е:
−2
1
1
2
13.
Басейн се пълни от два крана. Единият може да го напълни за 20 минути, а другият – за 30 минути. За колко минути ще се напълни басейнът, ако се отворят и двата крана едновременно?
50
24
12
15
14.
На чертежа $ΔABC$ е правоъгълен, $CM$ е медиана към хипотенузата $AB$, $CH$ е височина към хипотенузата, $CM = BC$ и $CH = 3$ $cm$. Дължината на страната $AC$ е:
4 cm
6 cm
3 cm
5 cm
15.
В трамвай могат да пътуват не повече от 70 души. Половината от пътниците, качили се в трамвая на първата спирка, заели някои от седящите места. След първата спирка броят на пътниците се увеличил с 8%. Колко пътници са се качили на първата спирка?
54
50
49
42
16.
Ако едно естествено число умножим с 4 и от полученото произведение извадим 7,
ще се получи число, по-малко от 13. Сборът на всички естествени числа с това
свойство е:
11
15
10
12
17.
Бабата на Камен го поканила за обяд в 12 часá. След като избрал маршрута, той преценил, че ако тръгне в 10 часá и 30 минути с ролери, ще закъснее с 15 минути. Затова Камен тръгнал в 10 часá и 30 минути с велосипед по същия маршрут и пристигнал с 20 минути по-рано от уречения час. Скоростта на Камен с ролери е със 7 кm/h по-малка, отколкото скоростта му с велосипед. Колко километра е маршрутът от дома на Камен до дома на баба му?
24,5 km
24 km
25 km
25,5 km
18.
Обемът на дадения на чертежа прав кръгов конус е:
$4 \pi \space см^3$
$15 \pi \space см^3$
$12 \pi \space см^3$
$36 \pi \space см^3$
В $ΔABC$ отсечката $CH$ е височина и точка $Н$ е вътрешна за отсечката $АВ$. Точката $M$ е средата на $BC$ и $AH = CH = HM$. Точката $N$ е от отсечката $HB$ и е такава, че $HN = MN = NB$.
Даденият чертеж е само за илюстрация – не е начертан в мащаб и не е предназначен за директно измерване на дължини на отсечки и мерки на ъгли.
19.
Намерете мярката на \(\sphericalangle CAB\).
45°
30°
40°
50°
20.
Намерете мярката на \(\sphericalangle ABC\).
30°
25°
45°
40°
21.
Намерете отношението $HN : BN$.
2:3
3:2
2:1
1:3
22.
Намерете отношението на лицата $S$
ΔNMH
: $S$
ΔCMH
.
3:2
1:3
3:1
2:3
Диаграмата показва броя на учениците стипендианти за учебната 2018/2019 и 2019/2020 година от едно училище.
23.
Какво е отношението на броя на учениците, получили стипендии през 2018/2019 година, към този през 2019/2020 година?
\( \frac 5 7 \)
\( \frac 3 4\)
\( \frac 4 5 \)
\( \frac {31} {41}\)
24.
Рaзмерът на една месечна стипендия през 2018/2019 г. е бил 105 лева, а през 2019/2020 г. – 135 лева. Всеки от стипендиантите получава стипендия през 10 от дванайсетте месеца на учебната година. Колко лева са необходими, за да се изплатят стипендиите общо за двете учебни години в училището?