Решени тестове
Вход
Учебни помагала
Контакти
Вход с Facebook
4
ти
клас
5
и
клас
6
и
клас
7
и
клас
8
и
клас
9
и
клас
12
и
клас
10
и
клас
Езици
Програмиране
Занимателни тестове
Тест по математика за VII клас, 2020-случайни въпроси
НАЦИОНАЛНО ВЪНШНО ОЦЕНЯВАНЕ ПО МАТЕМАТИКА – VII клас
Примерен тест със
с
лучайни въпроси
, модул 1
7
и
клас - Математика - Външно оценяване
1.
Стойността на израза $12 – (2,5 – b)$ при $b = –2,5$ е:
8
17
7
12
2.
Разликата 25.25 – 5.5 е равна на произведението:
25.25.25
20.20
25.20.5
20.30
3.
Многочленът $k^2 − 36$ е тъждествено равен на:
$2(k − 18)$
$(k − 18)(k + 18)$
$(k − 6)^2$
$(k − 6)(k + 6)$
4.
При $а = –2$ изразът $5–3(a–b)$ e тъждествено равен на:
$b+11$
$2+3b$
$3b+11$
$11–3b$
5.
Коренът на уравнението $2 – 2x = \frac{1}{2}$ е:
$1\frac{1}{4}$
$\frac{3}{4}$
$0$
$1\frac{1}{2}$
6.
На чертежа $△ABC$ е разностранен. Ако $AO = OB$, то точка $O$ лежи на:
симетралата на страната $AB$
височината през $C$ към $AB$
ъглополовящата на \(\sphericalangle ACB\)
медианата през $C$ към $AB$
7.
Мярката на \(\sphericalangle BCM\) от чертежа е:
110°
100°
140°
80°
8.
Числата 0 и 2 са корените на уравнението:
$|x−2|=0$
$|x−1|=−1$
$−|x−1|=−1$
$|x+1|=1$
9.
Мария почиства сама жилището си за 6 чàса, а нейната майка почиства същото жилище за 4 чàса. За колко чàса ще почистят жилището, ако работят заедно?
2 чàса и 24 минути
1 час и 44 минути
2,04 чàса
2 чàса
10.
Мярката на \(\sphericalangle BAC\) от чертежа е:
50°
40°
80°
10°
11.
Изразът $mx-2x-2y+my$ е тъждествено равен на израза:
$(x+y)(m+2)$
$(x+y)(m-2)$
$(x-y)(m+2)$
$(x-y)(m-2)$
12.
Решенията на неравенството ${2x-3 \over 3}>{2x+3 \over 2}$ са:
${x>-7,5}$
${x<-17}$
${x<-7,5}$
${x>3}$
13.
Камион и лека кола тръгват едновременно един срещу друг от два пункта, които са на разстояние $400$ $km$ един от друг. Ако превозните средства се движат с постоянна скорост, съответно $60$ $km/h$ и $90$ $km/h$ , те ще се срещнат след:
$2$ $h$ $36$ $min$
$2$ $h$ $40$ $min$
$2$ $h$
$2$ $h$ $20$ $min$
14.
На чертежа $ΔABC$ е правоъгълен, $CM$ е медиана към хипотенузата $AB$, $CH$ е височина към хипотенузата, $CM = BC$ и $CH = 3$ $cm$. Дължината на страната $AC$ е:
6 cm
3 cm
5 cm
4 cm
15.
Даден е правоъгълник с дължини на страните две последователни нечетни числа. Ако намалим по-малката му страна с $4$ $cm$, а другата запазим, ще получим правоъгълник, лицето на който е с $36$ $cm^2$ по-малко от лицето на дадения правоъгълник. Лицето на дадения правоъгълник е:
$80$ $cm^2$
$99$ $cm^2$
$63$ $cm^2$
$43$ $cm^2$
16.
Ученици от едно училище купили 40 билета за театър за 488 лева. Един билет на партера струва 14 лева, а един билет на балкона струва 10 лева. По колко билета са купили от двата вида?
24 и 16
25 и 15
22 и 18
23 и 17
17.
След като похарчил $\frac{4}{5}$ от парите, които имал, на Мони му останали 20 лева. Колко
лева е похарчил Мони?
100
80
16
25
18.
На чертежа $CD$ е височина на правоъгълния $ΔABC$ към хипотенузата му $AB$. Точката M е среда на страната $AC$, а точката $N$ е среда на страната $BC$. Ако $AC = 6$ $cm$ и $BC = $8$ $cm$, лицето на $ΔDN$M е:
7
cm
²
14
cm
²
12
cm
²
6
cm
²
За равнобедрения $ΔABC$ е дадено, че \(\sphericalangle ACB\) = 120° и $AL$ е ъглополовяща на \(\sphericalangle BAC\). На страната $AB$ е взета точка $M$ така, че $AM = AC$.
19.
Намерете големината на \(\sphericalangle ALM\) в градуси.
45°
55°
35°
60°
20.
Ако $CL = m$ и $BL = n$, намерете периметърът на $ΔMBL$.
$2m + n$
$2n + m$
$3m + n$
$m + 3n$
Диаграмата показва броя на учениците стипендианти за учебната 2018/2019 и 2019/2020 година от едно училище.
21.
Какво е отношението на броя на учениците, получили стипендии през 2018/2019 година, към този през 2019/2020 година?
\( \frac 3 4\)
\( \frac 5 7 \)
\( \frac {31} {41}\)
\( \frac 4 5 \)
22.
Рaзмерът на една месечна стипендия през 2018/2019 г. е бил 105 лева, а през 2019/2020 г. – 135 лева. Всеки от стипендиантите получава стипендия през 10 от дванайсетте месеца на учебната година. Колко лева са необходими, за да се изплатят стипендиите общо за двете учебни години в училището?