Решени тестове
Вход
Учебни помагала
Контакти
Вход с Facebook
4
ти
клас
5
и
клас
6
и
клас
7
и
клас
8
и
клас
9
и
клас
12
и
клас
10
и
клас
Езици
Програмиране
Занимателни тестове
Тест по математика за VII клас, 2020-случайни въпроси
НАЦИОНАЛНО ВЪНШНО ОЦЕНЯВАНЕ ПО МАТЕМАТИКА – VII клас
Примерен тест със
с
лучайни въпроси
, модул 1
7
и
клас - Математика - Външно оценяване
1.
Стойността на израза $12 – (2,5 – b)$ при $b = –2,5$ е:
17
12
7
8
2.
Кое числово равенство е вярно?
$\frac{1}{3} + \frac{1}{5} = \frac{1}{3+5}$
$\frac{1}{3} + \frac{1}{5} = \frac{5+3}{3.5}$
$\frac{1}{3} + \frac{1}{5} = \frac{1+1}{3.5}$
$\frac{1}{3} + \frac{1}{5} = \frac{1+1}{3+5}$
3.
При $a=–1$ най-малка стойност има изразът:
$a^3–1$
$a^3$
$a^2$
$a^2–2$
4.
Посочете невярното равенство:
$\frac{a^2}{9} – \frac{2ab}{3} + b^2 = (\frac{a}{3} + b)^2$
$64 – 16a + a^2 = (8 – a)^2$
$x^3 + 6x^2 + (2x + 8) = (x + 2)^3$
$x^2 – 6x + 9 = (x – 3)^2$
5.
Коренът на уравнението $(5 + x) (5 – x) – 5x (3 – \frac{1}{5}x) = 20$ е:
$3$
$\frac{1}{3}$
$2$
$– 3$
6.
На чертежа $△ABC$ е разностранен. Ако $AO = OB$, то точка $O$ лежи на:
ъглополовящата на \(\sphericalangle ACB\)
медианата през $C$ към $AB$
височината през $C$ към $AB$
симетралата на страната $AB$
7.
На чертежа правите $a$ и $b$ са успоредни. Ъгъл $α$ е равен на:
105°
85°
75°
115°
8.
Числата 0 и 2 са корените на уравнението:
$|x−1|=−1$
$−|x−1|=−1$
$|x−2|=0$
$|x+1|=1$
9.
Намалих 6 пъти естественото число $n$ и получих число, по-голямо от 1,8. Най-малкото число $n$, за което това е вярно, е:
1
12
10
11
10.
Мярката на \(\sphericalangle BAC\) от чертежа е:
10°
50°
40°
80°
11.
Изразът $mx-2x-2y+my$ е тъждествено равен на израза:
$(x+y)(m+2)$
$(x-y)(m+2)$
$(x+y)(m-2)$
$(x-y)(m-2)$
12.
Решенията на неравенството ${2x-3 \over 3}>{2x+3 \over 2}$ са:
${x>-7,5}$
${x<-17}$
${x<-7,5}$
${x>3}$
13.
Двама работници трябва да свършат определена работа. Единият може да свърши сам работата за $4$ $h$, а другият - за $12$ $h$. Първоначално единият работи сам $t$ $min$, след което двамата довършват работата. Ако $t$ е не повече от $20$ $min$, за колко възможно най-малко часа двамата работници ще свършат работата?
$3$ $h$
$3$ $h$ $45$ $min$
$5$ $h$
$2$ $h$ $45$ $min$
14.
На чертежа $ΔABC$ е правоъгълен, $CM$ е медиана към хипотенузата $AB$, $CH$ е височина към хипотенузата, $CM = BC$ и $CH = 3$ $cm$. Дължината на страната $AC$ е:
5 cm
6 cm
3 cm
4 cm
15.
В трамвай могат да пътуват не повече от 70 души. Половината от пътниците, качили се в трамвая на първата спирка, заели някои от седящите места. След първата спирка броят на пътниците се увеличил с 8%. Колко пътници са се качили на първата спирка?
49
54
42
50
16.
Две от страните на триъгълник са с дължини 5 cm и 7 cm, а третата има дължина, която се изразява с естествено число сантиметри. Броят на триъгълниците, които отговарят на това условие, е:
8
7
10
9
17.
След като похарчил $\frac{4}{5}$ от парите, които имал, на Мони му останали 20 лева. Колко
лева е похарчил Мони?
16
80
100
25
18.
Обемът на дадения на чертежа прав кръгов конус е:
$4 \pi \space см^3$
$15 \pi \space см^3$
$12 \pi \space см^3$
$36 \pi \space см^3$
За равнобедрения $ΔABC$ е дадено, че \(\sphericalangle ACB\) = 120° и $AL$ е ъглополовяща на \(\sphericalangle BAC\). На страната $AB$ е взета точка $M$ така, че $AM = AC$.
19.
Намерете големината на \(\sphericalangle ALM\) в градуси.
35°
55°
45°
60°
20.
Ако $CL = m$ и $BL = n$, намерете периметърът на $ΔMBL$.
$2m + n$
$m + 3n$
$3m + n$
$2n + m$
Диаграмата показва броя на учениците стипендианти за учебната 2018/2019 и 2019/2020 година от едно училище.
21.
Какво е отношението на броя на учениците, получили стипендии през 2018/2019 година, към този през 2019/2020 година?
\( \frac 5 7 \)
\( \frac 4 5 \)
\( \frac {31} {41}\)
\( \frac 3 4\)
22.
Рaзмерът на една месечна стипендия през 2018/2019 г. е бил 105 лева, а през 2019/2020 г. – 135 лева. Всеки от стипендиантите получава стипендия през 10 от дванайсетте месеца на учебната година. Колко лева са необходими, за да се изплатят стипендиите общо за двете учебни години в училището?