Решени тестове
Вход
Учебни помагала
Контакти
Вход с Facebook
4
ти
клас
5
и
клас
6
и
клас
7
и
клас
8
и
клас
9
и
клас
12
и
клас
10
и
клас
Езици
Програмиране
Занимателни тестове
Тест по математика за VII клас, 2020-случайни въпроси
НАЦИОНАЛНО ВЪНШНО ОЦЕНЯВАНЕ ПО МАТЕМАТИКА – VII клас
Примерен тест със
с
лучайни въпроси
, модул 1
7
и
клас - Математика - Външно оценяване
1.
Стойността на израза $12 – (2,5 – b)$ при $b = –2,5$ е:
7
17
12
8
2.
Разликата 25.25 – 5.5 е равна на произведението:
20.30
20.20
25.25.25
25.20.5
3.
Многочленът $k^2 − 36$ е тъждествено равен на:
$(k − 6)^2$
$2(k − 18)$
$(k − 6)(k + 6)$
$(k − 18)(k + 18)$
4.
Посочете невярното равенство:
$\frac{a^2}{9} – \frac{2ab}{3} + b^2 = (\frac{a}{3} + b)^2$
$x^3 + 6x^2 + (2x + 8) = (x + 2)^3$
$x^2 – 6x + 9 = (x – 3)^2$
$64 – 16a + a^2 = (8 – a)^2$
5.
Коренът на уравнението $(5 + x) (5 – x) – 5x (3 – \frac{1}{5}x) = 20$ е:
$\frac{1}{3}$
$3$
$2$
$– 3$
6.
На чертежа $△ABC$ е разностранен. Ако $AO = OB$, то точка $O$ лежи на:
симетралата на страната $AB$
ъглополовящата на \(\sphericalangle ACB\)
височината през $C$ към $AB$
медианата през $C$ към $AB$
7.
Мярката на \(\sphericalangle BCM\) от чертежа е:
110°
140°
80°
100°
8.
Корените на уравнението $2 |1 – x| – 5 = –1$ са:
1 и 3
–1 и –3
–1 и 3
1 и –3
9.
Мария почиства сама жилището си за 6 чàса, а нейната майка почиства същото жилище за 4 чàса. За колко чàса ще почистят жилището, ако работят заедно?
1 час и 44 минути
2,04 чàса
2 чàса
2 чàса и 24 минути
10.
Даден е равностранен триъгълник $ABC$. На лъча $BA$
→
е построена отсечката $AM = AC$ (точката $A$ е между точките $M$ и $B$) и на лъча $AB$
→
е построена отсечката $BN = BC$ (точката $B$ е между точките $N$ и $A$). Тогава \(\sphericalangle MCN\) е равен на:
150°
180°
120°
135°
11.
Изразът $a^2 + 2a – 3$ е тъждествено равен на:
$a (a + 3) – 3$
$(a + 3) (a – 1)$
$(2a – 1) (\frac{a}{2} + 3)$
$(a^2 + 1) (a – 3)$
12.
Коренът на уравнението $(x − 1)^2 − x(x − 1) = 0$ е:
−2
2
1
1
13.
Басейн се пълни от два крана. Единият може да го напълни за 20 минути, а другият – за 30 минути. За колко минути ще се напълни басейнът, ако се отворят и двата крана едновременно?
24
50
15
12
14.
В $ΔABC$ $AL$ е ъглополовяща. Големината на \(\sphericalangle ALB\) е:
75°
95°
85°
70°
15.
Моторна лодка изминава разстоянието между две пристанища по течението за 3 часа, а срещу течението – за 4 часа. Ако скоростта на течението е 6 км/ч, то разстоянието между пристанищата е:
144 км
126 км
42 км
168 км
16.
Две от страните на триъгълник са с дължини 5 cm и 7 cm, а третата има дължина, която се изразява с естествено число сантиметри. Броят на триъгълниците, които отговарят на това условие, е:
9
8
7
10
17.
Зар се хвърля три пъти и получените точки се събират. Броят на възможните сборове на трите числа е:
11
17
16
18
18.
Обемът на дадения на чертежа прав кръгов конус е:
$15 \pi \space см^3$
$12 \pi \space см^3$
$4 \pi \space см^3$
$36 \pi \space см^3$
Диагоналите на четириъгълника $ABCD$ ($AB$ \( \neq \) $BC$) се пресичат в точка $O$. Диагоналът $AC$ е ъглополовяща на \(\sphericalangle BAD\) и на \(\sphericalangle BCD\).
19.
Намерете мярката на \(\sphericalangle AOD\)
20.
Намерете и запишете (в кв.см) лицето на четириъгълника
ABCD.
21.
Намерете и запишете (в см) обиколката на четириъгълника
ABCD.
22.
Намерете и запишете отсечката, която е равна на отсечката
AD
.
Диаграмата показва броя на учениците стипендианти за учебната 2018/2019 и 2019/2020 година от едно училище.
23.
Какво е отношението на броя на учениците, получили стипендии през 2018/2019 година, към този през 2019/2020 година?
\( \frac 5 7 \)
\( \frac 3 4\)
\( \frac {31} {41}\)
\( \frac 4 5 \)
24.
Рaзмерът на една месечна стипендия през 2018/2019 г. е бил 105 лева, а през 2019/2020 г. – 135 лева. Всеки от стипендиантите получава стипендия през 10 от дванайсетте месеца на учебната година. Колко лева са необходими, за да се изплатят стипендиите общо за двете учебни години в училището?