Решени тестове
Вход
Учебни помагала
Контакти
Вход с Facebook
4
ти
клас
5
и
клас
6
и
клас
7
и
клас
8
и
клас
9
и
клас
12
и
клас
10
и
клас
Езици
Програмиране
Занимателни тестове
Тест по математика за VII клас, 2020-случайни въпроси
НАЦИОНАЛНО ВЪНШНО ОЦЕНЯВАНЕ ПО МАТЕМАТИКА – VII клас
Примерен тест със
с
лучайни въпроси
, модул 1
7
и
клас - Математика - Външно оценяване
1.
Изразът $x + \frac{1}{4}$ е тъждествено равен на:
$x+4$
$4x+1$
$x+0,25$
$x+1,4$
2.
Изразът $(1 − 2x)^2$ е тъждествено равен на:
$1 − 4x^2$
$1 − 4x − 4x^2$
$1 + 4x^2$
$1 − 4x + 4x^2$
3.
Многочленът $k^2 − 36$ е тъждествено равен на:
$(k − 18)(k + 18)$
$(k − 6)(k + 6)$
$2(k − 18)$
$(k − 6)^2$
4.
Коренът на уравнението $3(4 – x) = –4$ е:
$–\frac{4}{9}$
$\frac{16}{3}$
$16$
$8$
5.
Уравнението $−x^2 = (4 − x)x$ е еквивалентно на:
$0x = 4$
$4x = 1$
$x = x$
$−5x = 0$
6.
По данните от чертежа ъглите $x$ и $y$ са в отношение:
3:1
4:1
5:1
7:2
7.
На чертежа правите $a$, $b$ и $c$ са успоредни. Големината на ъгъл $ x $ е:
18°
42°
30°
32°
8.
Числата 1 и 0 са корените на уравнението:
$−|2x−1|=1$
$|2x−1|=0$
$|2x−1|=−1$
$|2x−1|=1$
9.
Колко грама захар има в 500 грама 5% захарен разтвор?
5
250
25
100
10.
Даден е равностранен триъгълник $ABC$. На лъча $BA$
→
е построена отсечката $AM = AC$ (точката $A$ е между точките $M$ и $B$) и на лъча $AB$
→
е построена отсечката $BN = BC$ (точката $B$ е между точките $N$ и $A$). Тогава \(\sphericalangle MCN\) е равен на:
135°
180°
150°
120°
11.
Многочленът $2(2y − 5) − 4y(2y − 5)$ е тъждествено равен на:
$4(2y − 5)(1 − y)$
$2(2y − 5)(1 + 2y)$
$−2y(2y − 5)$
$2(2y − 5)(1 − 2y)$
12.
Решенията на неравенството ${2x-3 \over 3}>{2x+3 \over 2}$ са:
${x>3}$
${x>-7,5}$
${x<-17}$
${x<-7,5}$
13.
Двама работници трябва да свършат определена работа. Единият може да свърши сам работата за $4$ $h$, а другият - за $12$ $h$. Първоначално единият работи сам $t$ $min$, след което двамата довършват работата. Ако $t$ е не повече от $20$ $min$, за колко възможно най-малко часа двамата работници ще свършат работата?
$2$ $h$ $45$ $min$
$5$ $h$
$3$ $h$ $45$ $min$
$3$ $h$
14.
На чертежа $ΔABC$ е равнобедрен ($AC=BC$). Външният ъгъл при върха $C$ е равен на 86° и \(\sphericalangle DAB\)=15° . Мярката на $x$ e:
58°
28°
94°
43°
15.
Моторна лодка изминава разстоянието между две пристанища по течението за 3 часа, а срещу течението – за 4 часа. Ако скоростта на течението е 6 км/ч, то разстоянието между пристанищата е:
42 км
144 км
168 км
126 км
16.
Ако едно естествено число умножим с 4 и от полученото произведение извадим 7,
ще се получи число, по-малко от 13. Сборът на всички естествени числа с това
свойство е:
12
10
11
15
17.
Бабата на Камен го поканила за обяд в 12 часá. След като избрал маршрута, той преценил, че ако тръгне в 10 часá и 30 минути с ролери, ще закъснее с 15 минути. Затова Камен тръгнал в 10 часá и 30 минути с велосипед по същия маршрут и пристигнал с 20 минути по-рано от уречения час. Скоростта на Камен с ролери е със 7 кm/h по-малка, отколкото скоростта му с велосипед. Колко километра е маршрутът от дома на Камен до дома на баба му?
25 km
24,5 km
25,5 km
24 km
18.
На чертежа $CD$ е височина на правоъгълния $ΔABC$ към хипотенузата му $AB$. Точката M е среда на страната $AC$, а точката $N$ е среда на страната $BC$. Ако $AC = 6$ $cm$ и $BC = $8$ $cm$, лицето на $ΔDN$M е:
7
cm
²
12
cm
²
14
cm
²
6
cm
²
За равнобедрения $ΔABC$ е дадено, че \(\sphericalangle ACB\) = 120° и $AL$ е ъглополовяща на \(\sphericalangle BAC\). На страната $AB$ е взета точка $M$ така, че $AM = AC$.
19.
Намерете големината на \(\sphericalangle ALM\) в градуси.
55°
35°
60°
45°
20.
Ако $CL = m$ и $BL = n$, намерете периметърът на $ΔMBL$.
$2n + m$
$2m + n$
$3m + n$
$m + 3n$
Диаграмата показва броя на учениците стипендианти за учебната 2018/2019 и 2019/2020 година от едно училище.
21.
Какво е отношението на броя на учениците, получили стипендии през 2018/2019 година, към този през 2019/2020 година?
\( \frac 3 4\)
\( \frac {31} {41}\)
\( \frac 4 5 \)
\( \frac 5 7 \)
22.
Рaзмерът на една месечна стипендия през 2018/2019 г. е бил 105 лева, а през 2019/2020 г. – 135 лева. Всеки от стипендиантите получава стипендия през 10 от дванайсетте месеца на учебната година. Колко лева са необходими, за да се изплатят стипендиите общо за двете учебни години в училището?