Тест по математика за VII клас, 2020-случайни въпроси


НАЦИОНАЛНО ВЪНШНО ОЦЕНЯВАНЕ ПО МАТЕМАТИКА – VII клас

Примерен тест със случайни въпроси, модул 1


7и клас - Математика - Външно оценяване
1. Ако $b=\frac{1}{6}$, то $(b–1)–3(1–b)+4(2b–1)$ е равно на:







2. Ако $\frac{3^8.9^3}{27^3} = 3^m$, то $m$ е равно на:







3. При $a=–1$ най-малка стойност има изразът:







4. При $а = –2$ изразът $5–3(a–b)$ e тъждествено равен на:







5. Равенството$(3x–2)^2=(*)–12x+4$ е тъждество, ако (*) се замени с едночлена:







6. На чертежа $AC = BC$. Мярката на \(\sphericalangle ACB\) е:







7. На чертежа $OL$ е ъглополовяща на \(\sphericalangle AOC\). Ако мярката на \(\sphericalangle AOC\) е с 40% по-голяма от мярката на \(\sphericalangle BOC\), то мярката на \(\sphericalangle BOL\) е:







8. Числата 0 и 2 са корените на уравнението:





9. Мария почиства сама жилището си за 6 чàса, а нейната майка почиства същото жилище за 4 чàса. За колко чàса ще почистят жилището, ако работят заедно?







10. На чертежа $S$1 и $S$2 са симетралите съответно на страните $AC$ и $BC$ в триъгълника $ABC$. Ако $AB + KP = 24$ $cm$, дължината на $CO$ е:







11. Изразът $mx-2x-2y+my$ е тъждествено равен на израза:





12. Коренът на уравнението $(x − 1)^2 − x(x − 1) = 0$ е:





13. Камион и лека кола тръгват едновременно един срещу друг от два пункта, които са на разстояние $400$ $km$ един от друг. Ако превозните средства се движат с постоянна скорост, съответно $60$ $km/h$ и $90$ $km/h$ , те ще се срещнат след:







14. На чертежа $ΔABC$ е равнобедрен ($AC=BC$). Външният ъгъл при върха $C$ е равен на 86° и \(\sphericalangle DAB\)=15° . Мярката на $x$ e:







15. Даден е правоъгълник с дължини на страните две последователни нечетни числа. Ако намалим по-малката му страна с $4$ $cm$, а другата запазим, ще получим правоъгълник, лицето на който е с $36$ $cm^2$ по-малко от лицето на дадения правоъгълник. Лицето на дадения правоъгълник е:







16. Ученици от едно училище купили 40 билета за театър за 488 лева. Един билет на партера струва 14 лева, а един билет на балкона струва 10 лева. По колко билета са купили от двата вида?





17. След като похарчил $\frac{4}{5}$ от парите, които имал, на Мони му останали 20 лева. Колко
лева е похарчил Мони?






18. Ъглополовящите $AM$ и $BN$ в успоредника $ABCD$ разделят страната $DC$ на три равни части. Дължината на страната $BC$ е $a$ cm. Периметърът на успоредника $ABCD$ в сантиметри е равен на:

 







В $ΔABC$ отсечката $CH$ е височина и точка $Н$ е вътрешна за отсечката $АВ$. Точката $M$ е средата на $BC$ и $AH = CH = HM$. Точката $N$ е от отсечката $HB$ и е такава, че $HN = MN = NB$.


Даденият чертеж е само за илюстрация – не е начертан в мащаб и не е предназначен за директно измерване на дължини на отсечки и мерки на ъгли.



19. Намерете мярката на \(\sphericalangle CAB\).





20. Намерете мярката на \(\sphericalangle ABC\).







21. Намерете отношението $HN : BN$.





22. Намерете отношението на лицата $S$ΔNMH : $S$ΔCMH.







Спортните екипи на учениците в едно училище са четири вида, както са показани на диаграмата.



23. Каква част от учениците имат в екипа си жълт цвят?







24. Каква част от учениците нямат в екипа си червен цвят?







25. Какъв е процентът на учениците, които имат син цвят в екипа си?







26. Колко градуса е ъгълът на сектора на учениците с червено-сините екипи?