Тест по математика за VII клас, 2020-случайни въпроси


НАЦИОНАЛНО ВЪНШНО ОЦЕНЯВАНЕ ПО МАТЕМАТИКА – VII клас

Примерен тест със случайни въпроси, модул 1


7и клас - Математика - Външно оценяване
1. Стойността на израза $12 – (6 + m)$ при $m = –12$ е:







2. Кое числово равенство е вярно?







3. Турист изкачва един връх за 6 чàса със скорост $x$ km/h и се връща обратно за 3 пъти по-малко време, като се движи с 4 km/h по-бързо. Уравнението, което изразява тази зависимост, е:







4. Посочете невярното равенство:







5. Равенството$(3x–2)^2=(*)–12x+4$ е тъждество, ако (*) се замени с едночлена:







6. На чертежа $AC = BC$. Мярката на \(\sphericalangle ACB\) е:







7. На чертежа $OL$ е ъглополовяща на \(\sphericalangle AOC\). Ако мярката на \(\sphericalangle AOC\) е с 40% по-голяма от мярката на \(\sphericalangle BOC\), то мярката на \(\sphericalangle BOL\) е:







8. Числата 1 и 0 са корените на уравнението:





9. Намалих 6 пъти естественото число $n$ и получих число, по-голямо от 1,8. Най-малкото число $n$, за което това е вярно, е:







10. Даден е равностранен триъгълник $ABC$. На лъча $BA$ е построена отсечката $AM = AC$ (точката $A$ е между точките $M$ и $B$) и на лъча $AB$ е построена отсечката $BN = BC$ (точката $B$ е между точките $N$ и $A$). Тогава \(\sphericalangle MCN\) е равен на:







11. Изразът $mx-2x-2y+my$ е тъждествено равен на израза:





12. Коренът на уравнението $(x − 1)^2 − x(x − 1) = 0$ е:





13. Басейн се пълни от два крана. Единият може да го напълни за 20 минути, а другият – за 30 минути. За колко минути ще се напълни басейнът, ако се отворят и двата крана едновременно?







14. В $ΔABC$ $AL$ е ъглополовяща. Големината на \(\sphericalangle ALB\) е:







15. След намаление на цената с 20% готварска печка струва 220 лв. Цената на печката
преди намалението е била:






16. Цената за пътуване с такси се определя по формулата $C = 1,20 + 0,80.k$, където $k$ са изминатите километри, а $C$ е цената в левове. От тази формула изминатите километри $k$ за дадена цена $С$ се определят така:







17. От София до Бургас разстоянието по определен маршрут е 390 km. От двата града един срещу друг тръгнали две превозни средства, като едното превозно средство се движело със скорост, която е с 10 km/h по-голяма от скоростта на другото превозно средство. След 3 часа пътуване двете превозни средства се намирали на разстояние 24 km един от друг? Каква е възможно най-голямата скорост, с която се е движело по-бавното превозно средство?







18. Обемът на дадения на чертежа прав кръгов конус е:







В $ΔABC$ отсечката $CH$ е височина и точка $Н$ е вътрешна за отсечката $АВ$. Точката $M$ е средата на $BC$ и $AH = CH = HM$. Точката $N$ е от отсечката $HB$ и е такава, че $HN = MN = NB$.


Даденият чертеж е само за илюстрация – не е начертан в мащаб и не е предназначен за директно измерване на дължини на отсечки и мерки на ъгли.



19. Намерете мярката на \(\sphericalangle CAB\).





20. Намерете мярката на \(\sphericalangle ABC\).







21. Намерете отношението $HN : BN$.





22. Намерете отношението на лицата $S$ΔNMH : $S$ΔCMH.







На диаграмата е показан броят на продадените леки автомобили от една автокъща през месеците април, май, юни и юли.



23. През кой от месеците продажбите на автомобили нарастват двойно спрямо предния месец?


24. Каква част от общия брой продадени автомобили за четирите месеца са тези, които са продадени през април?







25. Колко автомобила са продавани средно за месец през периода май – юли?


26. С колко процента е нараснала продажбата на леки автомобили през юли спрямо юни?