Решени тестове
Вход
Учебни помагала
Контакти
Вход с Facebook
4
ти
клас
5
и
клас
6
и
клас
7
и
клас
8
и
клас
9
и
клас
12
и
клас
10
и
клас
Езици
Програмиране
Занимателни тестове
Тест по математика за VII клас, 2020-случайни въпроси
НАЦИОНАЛНО ВЪНШНО ОЦЕНЯВАНЕ ПО МАТЕМАТИКА – VII клас
Примерен тест със
с
лучайни въпроси
, модул 1
7
и
клас - Математика - Външно оценяване
1.
Стойността на израза $12 – (6 + m)$ при $m = –12$ е:
–6
–18
6
18
2.
Ако $\frac{3^8.9^3}{27^3} = 3^m$, то $m$ е равно на:
2
4
3
5
3.
Нормалният вид на $(x – 0,2)^2$ е многочленът:
$x^2 – 0,4$
$x^2 – 0,4x + 0,04$
$x^2 + 0,04$
$x^2 – 0,4x + 0,4$
4.
При $а = –2$ изразът $5–3(a–b)$ e тъждествено равен на:
$11–3b$
$2+3b$
$b+11$
$3b+11$
5.
Коренът на уравнението $2 – 2x = \frac{1}{2}$ е:
$0$
$1\frac{1}{4}$
$1\frac{1}{2}$
$\frac{3}{4}$
6.
На чертежа $AC = BC$. Мярката на \(\sphericalangle ACB\) е:
50°
75°
25°
80°
7.
На чертежа правите $a$ и $b$ са успоредни. Ъгъл $α$ е равен на:
105°
85°
115°
75°
8.
Числата 0 и 2 са корените на уравнението:
$|x−2|=0$
$−|x−1|=−1$
$|x+1|=1$
$|x−1|=−1$
9.
Мария почиства сама жилището си за 6 чàса, а нейната майка почиства същото жилище за 4 чàса. За колко чàса ще почистят жилището, ако работят заедно?
1 час и 44 минути
2 чàса
2 чàса и 24 минути
2,04 чàса
10.
Мярката на \(\sphericalangle BAC\) от чертежа е:
50°
10°
40°
80°
11.
Изразът $a^2 + 2a – 3$ е тъждествено равен на:
$(a^2 + 1) (a – 3)$
$(a + 3) (a – 1)$
$a (a + 3) – 3$
$(2a – 1) (\frac{a}{2} + 3)$
12.
Решенията на неравенството ${2x-3 \over 3}>{2x+3 \over 2}$ са:
${x<-7,5}$
${x<-17}$
${x>-7,5}$
${x>3}$
13.
Двама работници трябва да свършат определена работа. Единият може да свърши сам работата за $4$ $h$, а другият - за $12$ $h$. Първоначално единият работи сам $t$ $min$, след което двамата довършват работата. Ако $t$ е не повече от $20$ $min$, за колко възможно най-малко часа двамата работници ще свършат работата?
$3$ $h$
$2$ $h$ $45$ $min$
$5$ $h$
$3$ $h$ $45$ $min$
14.
На чертежа $ΔABC$ е правоъгълен, $CM$ е медиана към хипотенузата $AB$, $CH$ е височина към хипотенузата, $CM = BC$ и $CH = 3$ $cm$. Дължината на страната $AC$ е:
6 cm
5 cm
4 cm
3 cm
15.
Моторна лодка изминава разстоянието между две пристанища по течението за 3 часа, а срещу течението – за 4 часа. Ако скоростта на течението е 6 км/ч, то разстоянието между пристанищата е:
168 км
144 км
42 км
126 км
16.
Две от страните на триъгълник са с дължини 5 cm и 7 cm, а третата има дължина, която се изразява с естествено число сантиметри. Броят на триъгълниците, които отговарят на това условие, е:
8
10
7
9
17.
От София до Бургас разстоянието по определен маршрут е 390 km. От двата града един срещу друг тръгнали две превозни средства, като едното превозно средство се движело със скорост, която е с 10 km/h по-голяма от скоростта на другото превозно средство. След 3 часа пътуване двете превозни средства се намирали на разстояние 24 km един от друг? Каква е възможно най-голямата скорост, с която се е движело по-бавното превозно средство?
64 km/h
65 km/h
60 km/h
54 km/h
18.
Обемът на дадения на чертежа прав кръгов конус е:
$36 \pi \space см^3$
$15 \pi \space см^3$
$12 \pi \space см^3$
$4 \pi \space см^3$
Диагоналите на четириъгълника $ABCD$ ($AB$ \( \neq \) $BC$) се пресичат в точка $O$. Диагоналът $AC$ е ъглополовяща на \(\sphericalangle BAD\) и на \(\sphericalangle BCD\).
19.
Намерете мярката на \(\sphericalangle AOD\)
20.
Намерете и запишете (в кв.см) лицето на четириъгълника
ABCD.
21.
Намерете и запишете (в см) обиколката на четириъгълника
ABCD.
22.
Намерете и запишете отсечката, която е равна на отсечката
AD
.
На диаграмата е показан броят на продадените леки автомобили от една автокъща през месеците април, май, юни и юли.
23.
През кой от месеците продажбите на автомобили нарастват двойно спрямо предния месец?
24.
Каква част от общия брой продадени автомобили за четирите месеца са тези, които са продадени през април?
0,2
\( \frac 1 4 \)
\( \frac 1 6 \)
0,4
25.
Колко автомобила са продавани средно за месец през периода май – юли?
26.
С колко процента е нараснала продажбата на леки автомобили през юли спрямо юни?