Решени тестове
Вход
Учебни помагала
Контакти
Вход с Facebook
4
ти
клас
5
и
клас
6
и
клас
7
и
клас
8
и
клас
9
и
клас
12
и
клас
10
и
клас
Езици
Програмиране
Занимателни тестове
Тест по математика за VII клас, 2020-случайни въпроси
НАЦИОНАЛНО ВЪНШНО ОЦЕНЯВАНЕ ПО МАТЕМАТИКА – VII клас
Примерен тест със
с
лучайни въпроси
, модул 1
7
и
клас - Математика - Външно оценяване
1.
Изразът $x + \frac{1}{4}$ е тъждествено равен на:
$4x+1$
$x+1,4$
$x+0,25$
$x+4$
2.
Изразът $(1 − 2x)^2$ е тъждествено равен на:
$1 + 4x^2$
$1 − 4x − 4x^2$
$1 − 4x + 4x^2$
$1 − 4x^2$
3.
При $a=–1$ най-малка стойност има изразът:
$a^2$
$a^2–2$
$a^3–1$
$a^3$
4.
Кое от неравенствата НЯМА решение?
$t ≤ 3t − 2t$
$t − 2t < t$
$0t < 1 − t$
$t − t < −1$
5.
Уравнението $−x^2 = (4 − x)x$ е еквивалентно на:
$4x = 1$
$x = x$
$0x = 4$
$−5x = 0$
6.
На чертежа правите $m$ и $n$ са успоредни и \(\sphericalangle MAN\) =60°. Ако \(\sphericalangle NAQ\) : \(\sphericalangle AQN\) = 3:1, тогава \(\sphericalangle NQA\) е равен на:
45°
50°
40°
30°
7.
На чертежа $OL$
→
е ъглополовяща на \(\sphericalangle AOC\). Ако мярката на \(\sphericalangle AOC\) е с 40% по-голяма от мярката на \(\sphericalangle BOC\), то мярката на \(\sphericalangle BOL\) е:
127° 30'
52° 30'
105°
75°
8.
Числата 0 и 2 са корените на уравнението:
$|x−1|=−1$
$−|x−1|=−1$
$|x+1|=1$
$|x−2|=0$
9.
Мария почиства сама жилището си за 6 чàса, а нейната майка почиства същото жилище за 4 чàса. За колко чàса ще почистят жилището, ако работят заедно?
2,04 чàса
1 час и 44 минути
2 чàса
2 чàса и 24 минути
10.
Даден е равностранен триъгълник $ABC$. На лъча $BA$
→
е построена отсечката $AM = AC$ (точката $A$ е между точките $M$ и $B$) и на лъча $AB$
→
е построена отсечката $BN = BC$ (точката $B$ е между точките $N$ и $A$). Тогава \(\sphericalangle MCN\) е равен на:
150°
135°
120°
180°
11.
Многочленът $2(2y − 5) − 4y(2y − 5)$ е тъждествено равен на:
$2(2y − 5)(1 + 2y)$
$2(2y − 5)(1 − 2y)$
$4(2y − 5)(1 − y)$
$−2y(2y − 5)$
12.
Посочете едно цяло число и едно дробно число, които са решения на неравенството $9 ≤ –3x$.
–3, –4.3
–27, –2.2
2, 2.5
–2, –2.5
13.
Двама работници трябва да свършат определена работа. Единият може да свърши сам работата за $4$ $h$, а другият - за $12$ $h$. Първоначално единият работи сам $t$ $min$, след което двамата довършват работата. Ако $t$ е не повече от $20$ $min$, за колко възможно най-малко часа двамата работници ще свършат работата?
$3$ $h$
$3$ $h$ $45$ $min$
$2$ $h$ $45$ $min$
$5$ $h$
14.
На чертежа $ΔABC$ е правоъгълен, $CM$ е медиана към хипотенузата $AB$, $CH$ е височина към хипотенузата, $CM = BC$ и $CH = 3$ $cm$. Дължината на страната $AC$ е:
3 cm
4 cm
5 cm
6 cm
15.
В трамвай могат да пътуват не повече от 70 души. Половината от пътниците, качили се в трамвая на първата спирка, заели някои от седящите места. След първата спирка броят на пътниците се увеличил с 8%. Колко пътници са се качили на първата спирка?
49
42
50
54
16.
Ако едно естествено число умножим с 4 и от полученото произведение извадим 7,
ще се получи число, по-малко от 13. Сборът на всички естествени числа с това
свойство е:
12
10
15
11
17.
От София до Бургас разстоянието по определен маршрут е 390 km. От двата града един срещу друг тръгнали две превозни средства, като едното превозно средство се движело със скорост, която е с 10 km/h по-голяма от скоростта на другото превозно средство. След 3 часа пътуване двете превозни средства се намирали на разстояние 24 km един от друг? Каква е възможно най-голямата скорост, с която се е движело по-бавното превозно средство?
64 km/h
65 km/h
60 km/h
54 km/h
18.
На чертежа $CD$ е височина на правоъгълния $ΔABC$ към хипотенузата му $AB$. Точката M е среда на страната $AC$, а точката $N$ е среда на страната $BC$. Ако $AC = 6$ $cm$ и $BC = $8$ $cm$, лицето на $ΔDN$M е:
7
cm
²
6
cm
²
14
cm
²
12
cm
²
За равнобедрения $ΔABC$ е дадено, че \(\sphericalangle ACB\) = 120° и $AL$ е ъглополовяща на \(\sphericalangle BAC\). На страната $AB$ е взета точка $M$ така, че $AM = AC$.
19.
Намерете големината на \(\sphericalangle ALM\) в градуси.
55°
60°
35°
45°
20.
Ако $CL = m$ и $BL = n$, намерете периметърът на $ΔMBL$.
$3m + n$
$m + 3n$
$2n + m$
$2m + n$
Спортните екипи на учениците в едно училище са четири вида, както са показани на диаграмата.
21.
Каква част от учениците
имат
в екипа си жълт цвят?
$\frac {1}{3}$
$\frac {2}{3}$
$\frac {1}{2}$
$\frac {1}{4}$
22.
Каква част от учениците
нямат
в екипа си червен цвят?
$\frac {5}{6}$
$\frac {7}{12}$
$\frac {2}{3}$
$\frac {1}{3}$
23.
Какъв е процентът на учениците, които имат син цвят в екипа си?
23%
25%
35%
20%
24.
Колко градуса е ъгълът на сектора на учениците с червено-сините екипи?
60°
45°
57°
55°