Решени тестове
Вход
Учебни помагала
Контакти
Вход с Facebook
4
ти
клас
5
и
клас
6
и
клас
7
и
клас
8
и
клас
9
и
клас
12
и
клас
10
и
клас
Езици
Програмиране
Занимателни тестове
Тест по математика за VII клас, 2020-случайни въпроси
НАЦИОНАЛНО ВЪНШНО ОЦЕНЯВАНЕ ПО МАТЕМАТИКА – VII клас
Примерен тест със
с
лучайни въпроси
, модул 1
7
и
клас - Математика - Външно оценяване
1.
Ако $b=\frac{1}{6}$, то $(b–1)–3(1–b)+4(2b–1)$ е равно на:
$–6$
$–\frac{4}{6}$
$\frac{4}{6}$
$6$
2.
Разликата 25.25 – 5.5 е равна на произведението:
25.20.5
20.20
25.25.25
20.30
3.
При $a=–1$ най-малка стойност има изразът:
$a^3–1$
$a^2–2$
$a^2$
$a^3$
4.
Кое от неравенствата НЯМА решение?
$t ≤ 3t − 2t$
$t − t < −1$
$t − 2t < t$
$0t < 1 − t$
5.
Коренът на уравнението $(5 + x) (5 – x) – 5x (3 – \frac{1}{5}x) = 20$ е:
$3$
$2$
$\frac{1}{3}$
$– 3$
6.
На чертежа $AC = BC$. Мярката на \(\sphericalangle ACB\) е:
50°
75°
80°
25°
7.
На чертежа правите $a$, $b$ и $c$ са успоредни. Големината на ъгъл $ x $ е:
30°
42°
18°
32°
8.
Кой израз е тъждествено равен на многочлена, отговарящ на следното описание:
Към втората степен на $4y$ е прибавено произведението на $y$ и $4$.
$4y(y+1)$
$4y(2y+1)$
$4y(4y+1)$
$4(4y+1)$
9.
Колко грама захар има в 500 грама 5% захарен разтвор?
25
250
5
100
10.
В $ΔABC$ $BM$ е медиана. Върху лъча $BM$ е взета точка $P$ така, че $ΔAMP \cong ΔCMB$. Ако \(\sphericalangle ABM\) = 30° и \(\sphericalangle APB\) = 40°, на колко градуса е равен \(\sphericalangle ABC\)?
40°
110°
70°
30°
11.
Изразът $a^2 + 2a – 3$ е тъждествено равен на:
$(a^2 + 1) (a – 3)$
$(a + 3) (a – 1)$
$(2a – 1) (\frac{a}{2} + 3)$
$a (a + 3) – 3$
12.
Коренът на уравнението $(x − 1)^2 − x(x − 1) = 0$ е:
2
1
1
−2
13.
Двама работници трябва да свършат определена работа. Единият може да свърши сам работата за $4$ $h$, а другият - за $12$ $h$. Първоначално единият работи сам $t$ $min$, след което двамата довършват работата. Ако $t$ е не повече от $20$ $min$, за колко възможно най-малко часа двамата работници ще свършат работата?
$2$ $h$ $45$ $min$
$5$ $h$
$3$ $h$
$3$ $h$ $45$ $min$
14.
На чертежа $ΔABC$ е правоъгълен, $CM$ е медиана към хипотенузата $AB$, $CH$ е височина към хипотенузата, $CM = BC$ и $CH = 3$ $cm$. Дължината на страната $AC$ е:
5 cm
4 cm
3 cm
6 cm
15.
В трамвай могат да пътуват не повече от 70 души. Половината от пътниците, качили се в трамвая на първата спирка, заели някои от седящите места. След първата спирка броят на пътниците се увеличил с 8%. Колко пътници са се качили на първата спирка?
49
54
42
50
16.
Ученици от едно училище купили 40 билета за театър за 488 лева. Един билет на партера струва 14 лева, а един билет на балкона струва 10 лева. По колко билета са купили от двата вида?
24 и 16
23 и 17
22 и 18
25 и 15
17.
Зар се хвърля три пъти и получените точки се събират. Броят на възможните сборове на трите числа е:
16
18
11
17
18.
Ъглополовящите $AM$ и $BN$ в успоредника $ABCD$ разделят страната $DC$ на три равни части. Дължината на страната $BC$ е $a$ cm. Периметърът на успоредника $ABCD$ в сантиметри е равен на:
$8a$
$10a$
$6a$
$16a$
Диагоналите на четириъгълника $ABCD$ ($AB$ \( \neq \) $BC$) се пресичат в точка $O$. Диагоналът $AC$ е ъглополовяща на \(\sphericalangle BAD\) и на \(\sphericalangle BCD\).
19.
Намерете мярката на \(\sphericalangle AOD\)
20.
Намерете и запишете (в кв.см) лицето на четириъгълника
ABCD.
21.
Намерете и запишете (в см) обиколката на четириъгълника
ABCD.
22.
Намерете и запишете отсечката, която е равна на отсечката
AD
.
Диаграмата показва броя на учениците стипендианти за учебната 2018/2019 и 2019/2020 година от едно училище.
23.
Какво е отношението на броя на учениците, получили стипендии през 2018/2019 година, към този през 2019/2020 година?
\( \frac 4 5 \)
\( \frac 5 7 \)
\( \frac {31} {41}\)
\( \frac 3 4\)
24.
Рaзмерът на една месечна стипендия през 2018/2019 г. е бил 105 лева, а през 2019/2020 г. – 135 лева. Всеки от стипендиантите получава стипендия през 10 от дванайсетте месеца на учебната година. Колко лева са необходими, за да се изплатят стипендиите общо за двете учебни години в училището?