Решени тестове
Вход
Учебни помагала
Контакти
Вход с Facebook
4
ти
клас
5
и
клас
6
и
клас
7
и
клас
8
и
клас
9
и
клас
12
и
клас
10
и
клас
Езици
Програмиране
Занимателни тестове
Тест по математика за VII клас, 2020-случайни въпроси
НАЦИОНАЛНО ВЪНШНО ОЦЕНЯВАНЕ ПО МАТЕМАТИКА – VII клас
Примерен тест със
с
лучайни въпроси
, модул 1
7
и
клас - Математика - Външно оценяване
1.
Ако $b=\frac{1}{6}$, то $(b–1)–3(1–b)+4(2b–1)$ е равно на:
$6$
$–\frac{4}{6}$
$–6$
$\frac{4}{6}$
2.
Разликата 25.25 – 5.5 е равна на произведението:
25.25.25
20.20
20.30
25.20.5
3.
Многочленът $k^2 − 36$ е тъждествено равен на:
$(k − 18)(k + 18)$
$(k − 6)^2$
$2(k − 18)$
$(k − 6)(k + 6)$
4.
Кое от неравенствата НЯМА решение?
$t − t < −1$
$0t < 1 − t$
$t ≤ 3t − 2t$
$t − 2t < t$
5.
Коренът на уравнението $2 – 2x = \frac{1}{2}$ е:
$\frac{3}{4}$
$0$
$1\frac{1}{2}$
$1\frac{1}{4}$
6.
По данните от чертежа ъглите $x$ и $y$ са в отношение:
7:2
3:1
4:1
5:1
7.
На чертежа правите $a$, $b$ и $c$ са успоредни. Големината на ъгъл $ x $ е:
42°
32°
30°
18°
8.
Кой израз е тъждествено равен на многочлена, отговарящ на следното описание:
Към втората степен на $4y$ е прибавено произведението на $y$ и $4$.
$4y(y+1)$
$4y(2y+1)$
$4y(4y+1)$
$4(4y+1)$
9.
Намалих 6 пъти естественото число $n$ и получих число, по-голямо от 1,8. Най-малкото число $n$, за което това е вярно, е:
11
10
12
1
10.
На чертежа $S$
1
и $S$
2
са симетралите съответно на страните $AC$ и $BC$ в триъгълника $ABC$. Ако $AB + KP = 24$ $cm$, дължината на $CO$ е:
$8$ $cm$
$4$ $cm$
$6$ $cm$
$12$ $cm$
11.
Многочленът $2(2y − 5) − 4y(2y − 5)$ е тъждествено равен на:
$−2y(2y − 5)$
$2(2y − 5)(1 + 2y)$
$2(2y − 5)(1 − 2y)$
$4(2y − 5)(1 − y)$
12.
Решенията на неравенството ${2x-3 \over 3}>{2x+3 \over 2}$ са:
${x<-17}$
${x>-7,5}$
${x<-7,5}$
${x>3}$
13.
Камион и лека кола тръгват едновременно един срещу друг от два пункта, които са на разстояние $400$ $km$ един от друг. Ако превозните средства се движат с постоянна скорост, съответно $60$ $km/h$ и $90$ $km/h$ , те ще се срещнат след:
$2$ $h$ $36$ $min$
$2$ $h$ $20$ $min$
$2$ $h$
$2$ $h$ $40$ $min$
14.
На чертежа $ΔABC$ е правоъгълен, $CM$ е медиана към хипотенузата $AB$, $CH$ е височина към хипотенузата, $CM = BC$ и $CH = 3$ $cm$. Дължината на страната $AC$ е:
6 cm
3 cm
4 cm
5 cm
15.
Моторна лодка изминава разстоянието между две пристанища по течението за 3 часа, а срещу течението – за 4 часа. Ако скоростта на течението е 6 км/ч, то разстоянието между пристанищата е:
42 км
144 км
168 км
126 км
16.
Цената за пътуване с такси се определя по формулата $C = 1,20 + 0,80.k$, където $k$ са изминатите километри, а $C$ е цената в левове. От тази формула изминатите километри $k$ за дадена цена $С$ се определят така:
$k = 0,80.C – 1,20$
$k = C:2,00$
$k = (C – 1,20):0,80$
$k = (C + 1,20).0,80$
17.
Бабата на Камен го поканила за обяд в 12 часá. След като избрал маршрута, той преценил, че ако тръгне в 10 часá и 30 минути с ролери, ще закъснее с 15 минути. Затова Камен тръгнал в 10 часá и 30 минути с велосипед по същия маршрут и пристигнал с 20 минути по-рано от уречения час. Скоростта на Камен с ролери е със 7 кm/h по-малка, отколкото скоростта му с велосипед. Колко километра е маршрутът от дома на Камен до дома на баба му?
24,5 km
24 km
25 km
25,5 km
18.
На чертежа $CD$ е височина на правоъгълния $ΔABC$ към хипотенузата му $AB$. Точката M е среда на страната $AC$, а точката $N$ е среда на страната $BC$. Ако $AC = 6$ $cm$ и $BC = $8$ $cm$, лицето на $ΔDN$M е:
14
cm
²
12
cm
²
6
cm
²
7
cm
²
За равнобедрения $ΔABC$ е дадено, че \(\sphericalangle ACB\) = 120° и $AL$ е ъглополовяща на \(\sphericalangle BAC\). На страната $AB$ е взета точка $M$ така, че $AM = AC$.
19.
Намерете големината на \(\sphericalangle ALM\) в градуси.
35°
45°
60°
55°
20.
Ако $CL = m$ и $BL = n$, намерете периметърът на $ΔMBL$.
$3m + n$
$2n + m$
$2m + n$
$m + 3n$
Спортните екипи на учениците в едно училище са четири вида, както са показани на диаграмата.
21.
Каква част от учениците
имат
в екипа си жълт цвят?
$\frac {2}{3}$
$\frac {1}{4}$
$\frac {1}{3}$
$\frac {1}{2}$
22.
Каква част от учениците
нямат
в екипа си червен цвят?
$\frac {5}{6}$
$\frac {2}{3}$
$\frac {7}{12}$
$\frac {1}{3}$
23.
Какъв е процентът на учениците, които имат син цвят в екипа си?
23%
35%
25%
20%
24.
Колко градуса е ъгълът на сектора на учениците с червено-сините екипи?
57°
45°
55°
60°