Тест по математика за VII клас, 2020-случайни въпроси


НАЦИОНАЛНО ВЪНШНО ОЦЕНЯВАНЕ ПО МАТЕМАТИКА – VII клас

Примерен тест със случайни въпроси, модул 1


7и клас - Математика - Външно оценяване
1. Изразът $x + \frac{1}{4}$ е тъждествено равен на:







2. Ако $\frac{3^8.9^3}{27^3} = 3^m$, то $m$ е равно на:







3. Турист изкачва един връх за 6 чàса със скорост $x$ km/h и се връща обратно за 3 пъти по-малко време, като се движи с 4 km/h по-бързо. Уравнението, което изразява тази зависимост, е:







4. Посочете невярното равенство:







5. Коренът на уравнението $(5 + x) (5 – x) – 5x (3 – \frac{1}{5}x) = 20$ е:







6. На чертежа правите $m$ и $n$ са успоредни и \(\sphericalangle MAN\) =60°. Ако \(\sphericalangle NAQ\) : \(\sphericalangle AQN\) = 3:1, тогава \(\sphericalangle NQA\) е равен на:








7. На чертежа правите $a$, $b$ и $c$ са успоредни. Големината на ъгъл $ x $ е:







8. Числата 0 и 2 са корените на уравнението:





9. Мария почиства сама жилището си за 6 чàса, а нейната майка почиства същото жилище за 4 чàса. За колко чàса ще почистят жилището, ако работят заедно?







10. Даден е равностранен триъгълник $ABC$. На лъча $BA$ е построена отсечката $AM = AC$ (точката $A$ е между точките $M$ и $B$) и на лъча $AB$ е построена отсечката $BN = BC$ (точката $B$ е между точките $N$ и $A$). Тогава \(\sphericalangle MCN\) е равен на:







11. Многочленът $2(2y − 5) − 4y(2y − 5)$ е тъждествено равен на:





12. Посочете едно цяло число и едно дробно число, които са решения на неравенството $9 ≤ –3x$.







13. Надя, Ели, Руми и Ира продават билети за благотворителен концерт. Диаграмата показва броя на билетите, които всяка от тях е продала. Ира е продала 30 билета.

Колко билета общо са продали Надя, Ели и Руми?







14. На чертежа точката $D$ от отсечката $AC$ е избрана така, че $AD = DB = BC$. Мярката на \(\sphericalangle ABC\) e:







15. Моторна лодка изминава разстоянието между две пристанища по течението за 3 часа, а срещу течението – за 4 часа. Ако скоростта на течението е 6 км/ч, то разстоянието между пристанищата е:







16. Цената за пътуване с такси се определя по формулата $C = 1,20 + 0,80.k$, където $k$ са изминатите километри, а $C$ е цената в левове. От тази формула изминатите километри $k$ за дадена цена $С$ се определят така:







17. Зар се хвърля три пъти и получените точки се събират. Броят на възможните сборове на трите числа е:





18. Обемът на дадения на чертежа прав кръгов конус е:







За равнобедрения $ΔABC$ е дадено, че \(\sphericalangle ACB\) = 120° и $AL$ е ъглополовяща на \(\sphericalangle BAC\). На страната $AB$ е взета точка $M$ така, че $AM = AC$.



19. Намерете големината на \(\sphericalangle ALM\) в градуси.







20. Ако $CL = m$ и $BL = n$, намерете периметърът на $ΔMBL$.







На диаграмата е показан броят на продадените леки автомобили от една автокъща през месеците април, май, юни и юли.



21. През кой от месеците продажбите на автомобили нарастват двойно спрямо предния месец?


22. Каква част от общия брой продадени автомобили за четирите месеца са тези, които са продадени през април?







23. Колко автомобила са продавани средно за месец през периода май – юли?


24. С колко процента е нараснала продажбата на леки автомобили през юли спрямо юни?