Решени тестове
Вход
Учебни помагала
Контакти
Вход с Facebook
4
ти
клас
5
и
клас
6
и
клас
7
и
клас
8
и
клас
9
и
клас
12
и
клас
10
и
клас
Езици
Програмиране
Занимателни тестове
Тест по математика за VII клас, 2020-случайни въпроси
НАЦИОНАЛНО ВЪНШНО ОЦЕНЯВАНЕ ПО МАТЕМАТИКА – VII клас
Примерен тест със
с
лучайни въпроси
, модул 1
7
и
клас - Математика - Външно оценяване
1.
Стойността на израза $12 – (6 + m)$ при $m = –12$ е:
18
–6
6
–18
2.
Изразът $(1 − 2x)^2$ е тъждествено равен на:
$1 − 4x − 4x^2$
$1 + 4x^2$
$1 − 4x + 4x^2$
$1 − 4x^2$
3.
Турист изкачва един връх за 6 чàса със скорост $x$ km/h и се връща обратно за 3 пъти по-малко време, като се движи с 4 km/h по-бързо. Уравнението, което изразява тази зависимост, е:
$6x=2(x+4)$
$6x=3(x-4)$
$6x=2(x-4)$
$6x=3(x+4)$
4.
Посочете невярното равенство:
$x^2 – 6x + 9 = (x – 3)^2$
$x^3 + 6x^2 + (2x + 8) = (x + 2)^3$
$64 – 16a + a^2 = (8 – a)^2$
$\frac{a^2}{9} – \frac{2ab}{3} + b^2 = (\frac{a}{3} + b)^2$
5.
Уравнението $−x^2 = (4 − x)x$ е еквивалентно на:
$4x = 1$
$x = x$
$−5x = 0$
$0x = 4$
6.
По данните от чертежа ъглите $x$ и $y$ са в отношение:
5:1
4:1
7:2
3:1
7.
На чертежа $OL$
→
е ъглополовяща на \(\sphericalangle AOC\). Ако мярката на \(\sphericalangle AOC\) е с 40% по-голяма от мярката на \(\sphericalangle BOC\), то мярката на \(\sphericalangle BOL\) е:
105°
52° 30'
127° 30'
75°
8.
Числата 0 и 2 са корените на уравнението:
$|x−2|=0$
$|x+1|=1$
$−|x−1|=−1$
$|x−1|=−1$
9.
Намалих 6 пъти естественото число $n$ и получих число, по-голямо от 1,8. Най-малкото число $n$, за което това е вярно, е:
11
12
10
1
10.
Мярката на \(\sphericalangle BAC\) от чертежа е:
10°
50°
40°
80°
11.
Изразът $a^2 + 2a – 3$ е тъждествено равен на:
$a (a + 3) – 3$
$(a^2 + 1) (a – 3)$
$(2a – 1) (\frac{a}{2} + 3)$
$(a + 3) (a – 1)$
12.
Решенията на неравенството ${2x-3 \over 3}>{2x+3 \over 2}$ са:
${x<-7,5}$
${x<-17}$
${x>-7,5}$
${x>3}$
13.
Камион и лека кола тръгват едновременно един срещу друг от два пункта, които са на разстояние $400$ $km$ един от друг. Ако превозните средства се движат с постоянна скорост, съответно $60$ $km/h$ и $90$ $km/h$ , те ще се срещнат след:
$2$ $h$ $20$ $min$
$2$ $h$ $36$ $min$
$2$ $h$ $40$ $min$
$2$ $h$
14.
На чертежа $ΔABC$ е правоъгълен, $CM$ е медиана към хипотенузата $AB$, $CH$ е височина към хипотенузата, $CM = BC$ и $CH = 3$ $cm$. Дължината на страната $AC$ е:
4 cm
5 cm
6 cm
3 cm
15.
В трамвай могат да пътуват не повече от 70 души. Половината от пътниците, качили се в трамвая на първата спирка, заели някои от седящите места. След първата спирка броят на пътниците се увеличил с 8%. Колко пътници са се качили на първата спирка?
54
42
50
49
16.
Ако едно естествено число умножим с 4 и от полученото произведение извадим 7,
ще се получи число, по-малко от 13. Сборът на всички естествени числа с това
свойство е:
15
11
12
10
17.
След като похарчил $\frac{4}{5}$ от парите, които имал, на Мони му останали 20 лева. Колко
лева е похарчил Мони?
80
100
16
25
18.
Обемът на дадения на чертежа прав кръгов конус е:
$12 \pi \space см^3$
$15 \pi \space см^3$
$36 \pi \space см^3$
$4 \pi \space см^3$
Диагоналите на четириъгълника $ABCD$ ($AB$ \( \neq \) $BC$) се пресичат в точка $O$. Диагоналът $AC$ е ъглополовяща на \(\sphericalangle BAD\) и на \(\sphericalangle BCD\).
19.
Намерете мярката на \(\sphericalangle AOD\)
20.
Намерете и запишете (в кв.см) лицето на четириъгълника
ABCD.
21.
Намерете и запишете (в см) обиколката на четириъгълника
ABCD.
22.
Намерете и запишете отсечката, която е равна на отсечката
AD
.
Спортните екипи на учениците в едно училище са четири вида, както са показани на диаграмата.
23.
Каква част от учениците
имат
в екипа си жълт цвят?
$\frac {1}{3}$
$\frac {1}{4}$
$\frac {2}{3}$
$\frac {1}{2}$
24.
Каква част от учениците
нямат
в екипа си червен цвят?
$\frac {7}{12}$
$\frac {2}{3}$
$\frac {5}{6}$
$\frac {1}{3}$
25.
Какъв е процентът на учениците, които имат син цвят в екипа си?
23%
25%
35%
20%
26.
Колко градуса е ъгълът на сектора на учениците с червено-сините екипи?
55°
60°
57°
45°